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Implicit 3-D Dyadic Green’s Function Using
Self-Adjoint Operators for Inhomogeneous
Planar Ferrite Circulator With Vertically
Layered External Material Employing

Mode-Matching
Clifford M. Krowne, Senior Member, IEEE

Abstract—Self-adjoint operators are found for the differen-
tial equations describing the z-dependent field variation in the
medium external to the ferrite microstrip circulator puck. The
external medium is, in general, inhomogeneously layered, consist-
ing of media with permittivity properties, magnetic properties, or
both. Eigenvalue equations characterizing the radially sectioned
medium outside the puck are found, as are the eigenvectors.
When the z-dependent parts are multiplied with the radial and
azimuthal dependences, the complete three-dimensional (3-D)
field expressions are determined. Source-constraint equations
(representing microstrip lines) driving the circulator are then
combined with the mode-matching technique to obtain in di-
rect space, implicit dyadic Green’s function elements. Mode
orthogonality is employed to encourage sparsity in matrix sys-
tem development where appropriate or convenient. The implicit
Green’s function is particularly useful because field information
and s-parameters may be found in real space, completely avoiding
typical inverse transformations.

Index Terms—Dyadic Green’s function, inhomogeneous ferrite,
microstrip circulator, mode-matching, self-adjoint operator.

I. INTRODUCTION

DEVELOPING Green’s-function approaches for canonical
structures can be particularly advantageous when solving

inhomogeneous boundary-valued problems, as is the case
for planar circulator problems of the microstrip variety. The
driving force occurs on the surface at the point

and or on a strip at . Obtaining
explicit dyadic Green’s-function expressions is known to be
very convenient and allows extremely rapid numerical com-
putation of electromagnetic fields and-parameters [1], [2].
In those papers, the circulator was a circular ferrite puck, but
with completely arbitrary radial variation of the descriptive
parameters of the problem. The puck itself was made up of
a number of annular rings, each with different widths, and
with different material properties for the magnetization
and demagnetization factor . The magnetic biasing field

was also allowed to vary in an arbitrary radial manner.
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Two- (2-D) and three-dimensional (3-D) dyadic Green’s
functions were obtained which depended upon recursive rela-
tions to find final expressions. Although these expressions are
compact and explicit, the recursive nature of the development
necessarily contains embedded information, making the actual
algebraic dyadic Green’s functions immensely complicated.
Therefore, computer techniques are essential in studying the
behavior of the dyadic Green’s functions. But because of the
canonical nature of the structure geometry, and the theoretical
techniques employed in the derivations, these dyadic Green’s
functions lead to field evaluations between 1000–10 000 times
faster than intensive numerical techniques like finite-difference
or finite-element methods.

What we are desirous of doing in this paper is dropping
this complex inhomogeneous puck into a medium which
consists of radial zones beyond the circulator puck perimeter.
Each zone is made up of an arbitrary number of horizontal
layers, stacked vertically in the-direction. This arrangement
outside of the puck will constitute yet another inhomogeneous
problem, in addition to that of the puck itself. In principle,
the region above the puck, bounded on the lower side by an
electric wall formed by a microstrip conductor, and on the top
by a metal limiting wall, can also be viewed as a zone.

Such a structure as outlined above can be used to treat the
case where a circulator ferrite puck is dropped into a hole in
a substrate, and possibly covered by a superstrate. Both the
substrate and superstrate may be broken up into layers. All
of the material external to the puck will be considered to be
isotropic, but with the possibility that the cylinder above the
puck and the layers in the radial zones can have permittivity
properties, permeability properties (unbiased), or both simul-
taneous permittivity and permeability properties. Each radial
zone, stretching vertically from the lower ground plane to the
top horizontal wall, made up of many different layered regions,
is viewed as a waveguide section, with a collective radial
waveguide propagation constant. At a cylindrical wall ,
mode-matching is applied. Theindex increases in value from

at the puck–external medium interface , to
at the last interface. The last interface may be chosen as

open, in which case a radiation condition could be applied, or
as an electric or magnetic wall requiring explicit, but simple,
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Fig. 1. The ferrite circulator structure including the regions above and
surrounding the device. This figure is formed by taking a cut plane at
� = const (in 3-D).

mode-matching conditions for the last zone’s vertically stacked
regions.

Here we will treat a specific case of the general 3-D
situation outlined in the last paragraph. The puck will be placed
inside a substrate like that found in microwave monolithic
integrated circuits (MMIC’s), with a ground plane bounding
it from below. An electric wall, representing microstrip metal,
will constrain the fields within the ferrite puck material from
above, and this electric wall will be flush with the substrate
surface. Immediately above the puck will be isotropic material,
not necessarily the same as that for the medium beyond
the circulator puck perimeter. One zone exists beyond the
perimeter, and it consists of the substrate on the bottom and
another material region on top, not necessarily the same as
the inner zone above the puck. The top layer, consisting of an
inner and outer radial ordered set, constitutes the superstrate,
which could be chosen by default in the simplest situation to
be air.

For the substrate being part of a MMIC, it could be one
of a number of semiconductor materials like Si, GaAs, or
even heterostructure material. For the case where a more
hybrid-like circuit is used, it could be an unbiased magnetic
material, even the same or related to that used for the puck
itself. Furthermore, depending upon how the biasing magnetic
field is obtained for the puck, the electric wall above the
puck may be a microstrip-keeper metal combination to allow
self-biasing of the ferrite material in the puck. With the use
of a conventional biasing magnet, the origin of this field is
considered to come from outside the whole structure, shown
schematically in Fig. 1. Allowing for a magnet to be placed
in a layered arrangement above the puck constitutes a greater
complication to the problem which will not be addressed in this
paper, although the theoretical principles for accomplishing
such inclusion will be treated in this work.

Self-adjoint operators are found for the differential equations
describing the -dependent field variation in the medium zone

external to the circulator puck. The external medium is, in
general, inhomogeneously layered, consisting of media with
permittivity properties, magnetic properties, or both. For the
simplest case in which each zone has regions of only one
trait (i.e., not mixed), and that trait is dielectric, information
is available on the TE axisymmetric eigenvalue equation
[3], eigenvector forms [4], [5], or scalar potential governing
equations and the eigenvalues and eigenvectors using self-
adjointness properties [6]. Eigenvalue equations characterizing
the radially sectioned medium outside the puck are found, as
are the eigenvectors. When the-dependent parts are multi-
plied with the radial and azimuthal dependences, the complete
field expressions are determined. Source-constraint equations
driving the circulator are then combined with the mode-
matching technique to obtain in direct space implicit dyadic
Green’s-function elements. Mode orthogonality is employed
to encourage sparsity in matrix system development where
appropriate or convenient. The self-adjoint operators lead to
testing functions which may be used to test field continu-
ity equations, thereby reducing some infinite summations to
single-term contributions. The implicit Green’s function is
particularly useful because field information and-paramaters
may be found in real space, completely avoiding typical
inverse transformations.

Consideration of field extension into the surrounding
medium, beyond the circulator perimeter, including fringing
such that fields may extend out and then above the height of
the circulator nonreciprocal puck, is an essentially physical
motivation for this theoretical work. The approach is a
good approximation to a very complicated geometric and
inhomogeneous problem, given the irregular effects arising
from application of the dc-biasing magnetic field and the actual
finite-width microstrip input and output lines. For narrow
microstrip lines, the expectation that the fields extend beyond
the device perimeter with azimuthal symmetry is very good,
and essential to this canonical treatment. When some of the
microstrip lines attain widths which are a noticeable fraction
of the puck radius, the error introduced by the symmetry
assumption for for the fields will be directly related to
the fraction of the circumference occluded by the presence
of the line itself.

II. SELF-ADJOINT OPERATORS

Consider the situation where the electromagnetic field oc-
cupies three areas (see Fig. 1). The first areais that filled by
the ferrite nonreciprocal material for and
The second area or zone has two regions for a
bottom region with and a top region
with . And the third region has and

. Conducting walls are assumed at (all
) and , and the radiation condition in effect

as . Fig. 2 shows a cross section through a
plane, with microstrip lines coming into (or out of) the ports
located at on the puck surface.

In order to maintain the same field structure formulas and
parallel construction techniques inside and outside of the puck,
governing equations are developed in the zone with the



KROWNE: IMPLICIT 3-D DYADIC GREEN’S FUNCTION FOR INHOMOGENEOUS PLANAR FERRITE CIRCULATOR 361

Fig. 2. This sketch represents a cut plane atz = const (in 3-D) for the
ferrite circulator structure.

stacked and regions utilizing field components from
the puck in the isotropic limit. Specifically, ( -mode)
and ( -mode) equations are sought. Maxwell’s sourceless
equations assuming dependence are

(1a)

(1b)

A. Operator Properties

Take the of (1a), noting that both and depend
upon spatial location, namely that and

(2)

using both expressions (1) to remove any-field depen-
dence. Using an identity to eliminate the term

(3)

Realizing that the divergence of a curl in the left-hand side
(LHS) of (1b) is zero, the divergence of the electric field in
(3) may be replaced by

(4)

Equation (4) has been obtained from the general spatial
variation being reduced to that in only the-direction because
of regional changes within a zone (i.e., for a two-region zone
as being considered here, for and

for with a discontinuity at ).
Inserting (4) into (3), the vector electric-field governing

equation is found:

(5)

(6)

If the TM to is selected as the basic mode electric type (out
of the two required for a complete field description) with only
the electric field existing perpendicular to the transverse plane,
this being precisely the same directional field setup inside the
puck, then (5) vastly simplifies to

(7)

(8)

Since all of the other field components (transverse) depend on
formulas written in terms of , only its expansion need be
considered first:

(9)

Here it is seen that the electric-field solution is the sum
over the radial variation, -directed harmonic, and azimuthal
harmonic products. The coefficient provides the term by
term weighting. The infinite sum over propagation constants
in forward and backward directions may be changed
into only a backward wave summation, but now requiring
explicit forward and backward coefficients. Superscripts
“ ” and “ ” added to the coefficients store that wave-
direction information, letting the subscript propagation index
being simplified to merely . This process is collected
together in the next line. Recognizing that in each zone only
the radial propagation constantis definable (and, therefore,
capable of being indexed over the entire zone), but that
varies from region to region within a zone, the fifth line
is obtained. Finally, the solutions to be determined later
can be assigned for the solutions, index numbers ordered as

The associations for in (9) can be
summarized as

(10)
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Now, inserting (9) into (8) and applying separation of
variables, with

(11)

acting as the separation constant

(12)

(13)

Select the first two derivative terms of (13), plus the first of
the last bracketed sum, as the inhomogeneous linear operator

:

(14)

Invoking (14) enables (13) to be recast as

(15)

Operator equation (15) is in eigenvalue form, the eigenvalue
operator on the right-hand side (RHS) of the equation merely
the eigenvalue constant. Requiring the radiation condition to
hold as makes

(16)

Next, let us find the adjoint of to better understand the
behavior of the inhomogeneously loaded waveguide zone. For
ease of mathematical argument and brevity, abbreviate two
different solutions as and and define the inner
product on the interval as

(17)

with weight . To find the adjoint, study

(18)

Sometimes it is convenient to explicitly place the weight in
the bracketed expression when we wish to be reminded of
its presence, as in . Anyway, we seek to convert (18)
into the form by repeated application of integration by
parts and thereby identify the adjoint form of the operator

. The weight we choose here is

(19)

Therefore,

(20)

From (20), the adjoint form of the operator can be identified
as

(21)

Thus, it is seen that the operator is self-adjoint [7]–[9].
Equation (21) was obtained by using a number of boundary
conditions, which will be briefly covered in this section.
Electric-wall conditions at require transverse-
field components and to be zero. From the -field
component expression [10], e.g.,

(22)
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one observes that pure Neumann conditions hold at the ends
of the inner product domain. This conclusion follows because
(22) originates when exponential (harmonic, plane waves) are
chosen for the -functional behavior. Thus, the coefficient,
from the second piece of generating the TM mode, indexed
for -directed modes, contains an factor, implying the
presence of a partial derivative operator.

(23a)

(23b)

The same conditions, of course, hold for. Because within
a region of a zone, is stipulated to vary continuously,
and for the zone to vary, at most, piecewise continuously,
because the discontinuities only occur at the region interfaces,

will be well behaved at the domain ends. Furthermore,
requiring to be constant within a region makes a Neumann
condition also hold for it. Thus

(24a)

(24b)

Neumann conditions (24) on are not required for
obtaining the self-adjoint relation (20). This is also the case
for TE modes, as will be demonstrated later.

It is emphasized here that although is self-adjoint,
it is not representing lossless media. The media can be
dielectrically lossy, magnetically lossy, or lossy in both regards
simultaneously. Thus, the eigenvalue in (15) may be complex.
In fact, for ordinary media, we expect it to be complex. Now,
let us review in light of this fact, the short derivation of
orthogonality as implied by self-adjointness. Consider that any
self-adjoint operator obeys

(25)

Let

(26a)

(26b)

associating and with, respectively, the eigenvalue indices
and . Placing (26) into (25) yields

or

or

(27)

Orthogonality relation (27) holds precisely because the-
eigenfunctions are associated with different eigenvalues. In our
case, the eigenvalue difference is between different complex
eigenvalues. Relation (27) says that the-eigenfunctions are
orthogonal no matter how many different regions are stacked
in a zone, and this is true regardless of whether we use only

dielectric regions, magnetic regions (unbiased), or intermix
these two types of regions, or even if we further complicate the
situation by using regions with both dielectric and magnetic
characteristics.

B. Operator Properties

Following the philosophy of the development in
Section II-A, take the of (1b):

(28)

using both expressions (1) to remove any-field depen-
dence. Using an identity to eliminate the term

(29)

Realizing that the divergence of a in the LHS of (1a)
is zero, the divergence of the magnetic field in (29) may be
replaced by

(30)

Equation (30) has been obtained from the general spatial
variation being reduced to that in only the-direction because
of regional changes within a zone (i.e., for a two-region zone
as being considered here, for and

for with a discontinuity at ).
Inserting (30) into (29), the vector magnetic-field governing

equation is found:

(31)

If the TE to is selected as the basic mode magnetic type with
only the magnetic field existing perpendicular to the transverse
plane, then (31) greatly simplifies to

(32)

or

(33)

Since all of the other field components (transverse) depend on
formulas written in terms of , only its expansion need be
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found:

(34)

Here it is seen that the magnetic-field solution is the sum
over the radial variation, -directed harmonic, and azimuthal
harmonic products. The solutions to be determined later,
more correctly denoted as , are assigned for the solutions
index numbers ordered as Solutions
are different than for the case. The associations for

in (34) can be summarized as

(35)

Now inserting (34) into (33) and applying separation of
variables with

(36)

acting as the separation constant

(37)

(38)

Select the first two derivative terms of (38), plus the first of
the last bracketed sum, as the inhomogeneous linear operator

:

(39)

Utilizing (39) enables (38) to be recast as

(40)

Requiring that the radiation condition to hold again as
makes

(41)

Next, let us find the adjoint of to better understand the
behavior of the inhomogeneously loaded waveguide zone. For
ease of mathematical argument and brevity, again abbreviate
two different solutions as and and use the inner
product definitions (17) and (18) on the interval . We
seek to convert (18) into the form in order to identify
the adjoint form of the operator . The weight we
choose here is

(42)

Therefore,
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(43)

From (43), the adjoint form of the operator can be identified
as

(44)

Thus, it is seen that the operator is self-adjoint. Equation (44)
was obtained by using a number of boundary conditions, which
will be briefly covered in this section. Electric-wall conditions
at require transverse-field componentsand to
be zero. From the -field component expression in (22), one
observes that pure Dirichlet conditions hold at the ends of the
inner product domain. Coefficient , from the first piece of

generating the TE mode, indexed for -directed modes,
has no factor, implying

(45a)

(45b)

The same conditions hold for. Because within a region of a
zone, is stipulated to vary continuously, and for the zone
to vary, at most, piecewise continuously, because the disconti-
nuities only occur at the region interfaces, will be well
behaved at the domain ends. Furthermore, requiring to
be constant within a region makes a Neumann condition also
hold for it. Thus

(46a)

(46b)

Although (46) holds, conditions on are not needed
for obtaining the self-adjoint relation (43). This is like the case
for the TM mode, where (24) was not required.

C. Eigenvalues of

Eigenvalues of the modes, and the consequent
values of , can be found by applying the boundary
conditions on the electric-field component

(47)

(48)

and continuity conditions on the azimuthal components of the
electric and magnetics fields

(49)

(50)

can be written using the third-line form of (9), and (22):

(51)

where

(52a)

(52b)

(52c)

The comparable expression to (22) is [10]

(53)

(54)

Electric-wall boundary conditions (47) and (48) yield with the
help of (51)

(55)

(56)

These conditions have resulted from the global nature of the
radial propagation constant or index, allowing the
radial function and factors depending only on this index to
drop out of the equations. Superscripts “” and “ ” denote,
respectively, the top and bottom regions in the outside zone.
It should be realized here that has an implicit dependence
on so that when we see the perpendicular propagation
constant, it is understood that it constitutes an abbreviation for

(for the top region, for example).
Continuity conditions (49) and (50) become, using, respec-

tively, (51) and (54)

(57)

(58)

Adding and subtracting these two equations from each other
and utilizing (56) gives the top-region amplitude coefficients

(59)
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(60)

It is also helpful to define a ratio of the two amplitudes

(61)

so that

(62)

Similarly, referring back to (56)

(63)

Insert amplitude relations (59) and (60) into the electric-wall
condition (55) to find the characteristic eigenvalue equation

(64)

Keeping the bracketed groupings in (64), identifying
and , the exponential

transcendental eigenvalue equation can be converted to the
following trigonometric form:

(65)

Here, . Note that for the limiting case where
the top and bottom regions become identical, the numer-
ator becomes zero and (65) reduces to the familiar form

. Another useful form may be obtained by
grouping according to the ratios and .
Again, the exponential transcendental eigenvalue equation is
changed into a trigonometric expression, which can be set

down in the following two ways:

(66a)

(66b)

The first form of this tangent relationship is written in terms
of the propagation constant and dielectric ratios. The second
form relates the top-region quantities to the bottom-region
quantities. Equation (66b) can be shown to have the same form
as indicated for a stacked inhomogeneous dielectric zone [6].
But we must be aware that now the material of the regions
can be dielectric, magnetic, or of mixed permittivity and
permeability character. The transcendental eigenvalue equation
for the will be seen later to differ explicitly from the pure
dielectric form even though the has not.

That (66) or (65) constitute eigenvalue equations for
can be understood if the separation equations are found from
the differential governing equation (13) for with the help
of (10) providing the exponential form. Inserting (10) into
(13) for the top and bottom regions in the zone, realizing that
the inhomogeneous dielectric constant term drops out inside
each region, yields

(67a)

(67b)

Invoking (11) for the separation constant, and taking the
positive branches in (67), gives

(68a)

(68b)

Inserting (68) into (66b) gives a single transcendental equation
in terms of the unknown . Material-region propagation
constants are delineatable once (6) is examined:

(69a)

(69b)

Return to the amplitude ratio . Following the same
reasoning in finding (66) using grouping by and

, yields (70) shown at the bottom of the page.
Eliminating the bottom-region information in (70) by using
the eigenvalue equation form (66b), the compact formula

(71)

results. Using ratio grouping and (66), the backward and
forward amplitude coefficients in (59) and (60) for the top

(70)
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region are now

(72)

(73)

D. Eigenvalues of

Eigenvalues of the modes, and the consequent val-
ues of can be found by applying the boundary conditions
on the electric-field component

(74)

(75)

and continuity conditions on the azimuthal components of the
electric and magnetics fields

(76)

(77)

can be written using the third-line form of (34) and (22)
as follows:

(78)

can be expressed using the first part of (53) as

(79)

Electric-wall boundary conditions (74) and (75) yield, with
the help of (78)

(80)

(81)

These conditions have resulted from the global nature of the
radial propagation constant or index, allowing the
radial function and factors depending only on this index to
drop out of the equations. It should be realized here that

has an implicit dependence on so that when we see
the perpendicular propagation constant, it is understood that it
constitutes an abbreviation for (e.g., for the top region).

Continuity conditions (76) and (77) become, using, respec-
tively, (78) and (79)

(82)

(83)

Adding and subtracting these two equations from each other,
and utilizing (81), gives the top-region amplitude coefficients

(84)

(85)

Define a ratio of the backward and forward wave amplitudes

(86)

so that (87) results, shown at the bottom of the page. Similarly,
referring back to (81)

(88)

Insert amplitude relations (84) and (85) into the electric-wall
condition (80) to find the characteristic eigenvalue equation

(89)

Keeping the bracketed groupings in (89), identifying
and , the exponential

(87)
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transcendental eigenvalue equation can be converted to the
following trigonometric form:

(90)

For the limiting case where the top and bottom regions become
identical, the numerator becomes 0 and (90) reduces to the
familiar form . Another useful form may be
obtained by grouping according to the propagation constant
and permeability ratios and . Again, the
exponential transcendental eigenvalue equation is changed into
a trigonometric expression, which can be set down in two
ways as follows:

(91a)

(91b)

The first form of this tangent relationship is written in terms
of the propagation constant and dielectric ratios. The second
form relates the top-region quantities to the bottom-region
quantities. Equation (91b) shows that the magnetic differences
between regions in a zone appear explicitly in the eigenvalue
equation for the modes, whereas (66b) demonstrated that
the dielectric differences between regions in a zone appear
explicitly in the eigenvalue equation for the modes.

That (91) or (90) constitute eigenvalue equations for
can be understood if the separation equations are found from
the differential governing equation (38) for with the help
of (35) providing the exponential form. Inserting (35)
into (38) for the top and bottom regions in the zone, realizing
that the inhomogeneous permeability term drops out inside
each region, yields

(92a)

(92b)

Invoking (36) for the separation constant, and taking the
positive branches in (92), gives

(93a)

(93b)

Inserting (93) into (91b) gives a single transcendental equation
in terms of the unknown .

Looking at the amplitude ratio in (87) again, using the
same procedure in finding (91) using grouping by
and

(94)

Eliminating the bottom-region information in (94) by using
the eigenvalue equation form (91b), the compact formula

(95)

results. Using ratio grouping and (91), the backward and
forward amplitude coefficients in (84) and (85) for the top
region are now

(96)

(97)

E. Eigenvectors of

Return to (10), extracting out the third exponential wave
form. Factor out the backward wave

(98)

Writing (98) in terms of the different regions (two here), using
the definitions (61) and (63)

(99)

The fourth and sixth forms of (99) created the scaled for-
mulas for the eigenfunctions, separated from the unknown
coefficients found in . Known ratios

(100)

available from (59), enable the unknown fields to be written in
terms of one unknown amplitude for each zone (one external
zone beyond the circulator in the current problem). The scaled
forms are related to one another by

(101)

Retrieving (71) and (72), the first scaled eigenfunction (the
generator for the eigenvector) form in the top region can be
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evaluated, completing its explicit formula

(102)

One can easily show that (102) corresponds directly to a
continuity condition at the interface if it is multiplied
by , thereby satisfying the normal component of the
displacement field continuity

(103)

Enlisting (99), the orthogonal property for given by
(27) carries over to , i.e.,

(104)

It is instructive to verify that (102) indeed satisfies (104).
Proceeding,

(105)

Referring to a compilation of integrals [11], the first definite
integral in (105) is evaluated to be

(106)

Referencing the integration variable in the second integral
to the top plane, and making appropriate constant
changes allows the use of (106) again. The difference between
perpendicular propagation constant eigenvalues in the different
regions, which act as a prefactors in both integrals, are found
to be equal by (67) to , reducing the inner

product expression in (105) to

invoking the eigenvalue equation (66). Thus, we have verified
(104) directly.

The orthogonality relation may now be stated as

(107)

Let us borrow the RHS of (105), and particularize to
to obtain the square of the normalization constant which is
equal to :

(108)

where [11]

(109a)

(109b)

F. Eigenvectors of

Go back to (35), extracting out the third exponential wave
form. Factor out the backward wave

(110)

Writing (110) in terms of the different regions (two here),
using the definitions (86) and (88)



370 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998

(111)

The fourth and sixth forms of (111) created the scaled
formulas for the eigenfunctions, separated from the unknown
coefficients found in . Known ratios

(112)

available from (84), enable the unknown fields to be written
in terms of one unknown amplitude for each zone. The scaled
forms are related to one another by

(113)

Retrieving (95) and (96), the first scaled eigenfunction (the
generator for the eigenvector) form in the top region can be
evaluated, completing its explicit formula

(114)
Equation (114) can be shown to correspond directly to a

continuity condition at the interface if it is multiplied
by , thereby satisfying the normal component of the-
field continuity

(115)

Utilizing (111), the orthogonal property for given by

(27) carries over to when using the proper weight
function in the inner product construction, i.e.,

(116)

It is also informative to verify that (114) does satisfy (116).
Proceeding,

(117)

Referring to a compilation of integrals [11], the first definite
integral in (117) is evaluated to be

(118)

Referencing the integration variable in the second integral
to the top plane, and making appropriate constant
changes allows the use of (118) again. The difference between
perpendicular propagation constant eigenvalues in the different
regions, which act as prefactors in both integrals, are found
to be equal by (92) to , reducing the inner
product expression in (117) to

invoking the eigenvalue equation (91). Thus, we have verified
(116) directly.

The orthogonality relation may now be stated as

(119)

Let us borrow the RHS of (117), and particularize to
to obtain the square of the normalization constant which is
equal to :

(120)

where [11]

(121a)

(121b)
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III. I MPLICIT DYADIC GREEN’S FUNCTION CONSTRUCTION

A. Fields for Puck, Interior, and External Zone Interfaces

Electromagnetic fields to be used in following continuity
conditions employing the mode-matching method are summa-
rized here from the previous section in thezone, plus those
found also in the and regions:

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

Field expressions in (130)–(133) for the circulator puck region
are available in [2] and [10].

Use of tangential-field continuity at the interface will
be used to connect the various regions, withthe variable, i.e.,

(134)

This expression must be applied at the and interfaces.
It will not hold at the interface for the magnetic-field
components because the surface contains singular
forcing functions (delta functions). In the spirit of applying
rigorous mode-matching theory by projecting testing functions
on the continuity equations and integrating, we find for the
interface

(135)

(136)

(137)

(138)

and for the interface

(139)

(140)

Lastly, for the interface

(141)

(142)
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Here, are -dependent testing functions of the par-
ticular region , , as applied to the -type of
field-continuity equation for component-type, with the mode
index . Projection of these functions on the field-continuity
equations in the fashion of (135)–(142) allows their orthogonal
properties to be used, with proper attention paid to weighting
functions, thereby reducing the complexity of the eventual
system of equations describing the problem. Wherever or-
thogonality is exploited, matrix sparsity is enhanced. For
the exterior zone problem, the work required to determine
the orthogonal properties of the scalar generating potentials
is balanced by their convenience in use and sparse matrix
behavior. We will use such potential properties here, noting
that it is possible to use an external unloaded zone cavity
testing function (with no orthogonal features, but easy to
identify). These testing functions are

(143)

(144)

(145)

(146)

(147)

(148)

Notice that the infinite summations contained in the field
representations have been truncated to , , in
the respective regions, with mode type differentiation in the
external zones. must be chosen with some care. and

may be chosen relative to (ignoring for the moment,
mode-type differentiation) as

(149)

There is some flexibility in the specific ratio converting
into the other summation limits [12]. These issues are referred
to as the relative convergence behavior. How large to choose

is an issue of absolute convergence, specifically how
accurate an answer we desire for the problem solution.

B. Nonsource-Governing Equations

Selection of the subset (if a full set is not needed) of
continuity equations is not unique [13], the choice being
dependent upon individual inclination, sometimes numerical
advantage, and the requirement that the number of equations
equal the number of unknowns when the missing source
equations are included (to be addressed later). Thus we choose
(135), (136), (141), and (142), which, once the testing function

projections and integrations are performed, become

(150)

(151)

(152)

(153)

In these previous relationships, for the internalregion

(154)

Also, the normalized constant used in (153) is

(155)

The overlap integrals found in (150)–(153) are given by
(156)–(165), shown on the following page [11].

Orthogonality relationships relevant to these equations are
found in (104) and (116) for, respectively, and [used
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(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)



374 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998

in (152) and (153)], and below for (150) and (151):

(166)

(167)

where

(168)

Also

(169)

was used in (158), and a similar formula exists for the “”
mode.

Four-system equation-set (150)–(153) constitute
individual equations ( if the “ ”

and “ ” mode index limits are the same), but the unknowns are

(170a)

(170b)

(170c)

(170d)

(170e)

(170f)

making a total of of them
( if the “ ” and “ ” mode index limits are
the same). Notice that the case has been left off of the
second radial-mode coefficient index listing (170b) because
it corresponds to the zero perpendicular thickness situation
and we expect the first radial mode to completely dominate.
Therefore, we see that exactly more equations are
required to describe the structure.

C. Source-Governing Equations

The missing equations come from two source equations
governing the exchange of energy between the magnetic delta
forcing functions acting on the surface through a
point aperture, and the puck structure. The components of
the surface magnetic field are chosen to couple the external
environment to the circulator puck structure, thereby defining
a Green’s function construction. The two source equations are

(171)

(172)

Both and may be expressed by a Fourier series
constructed from the same expansion functions as used to
represent the circulator puck field components on the interval

by simply using the extended field on [14]
as follows:

(173)

(174)

(175)

(176)

(177)

Here “ ” indicates extended field and (177) results from
the or nature of the field component variation within
the circulator puck. It is convenient to retain the exponential
Fourier series on for an additional representation of
the -dependent coefficients found in the-expansions (173)
and (174). Thus

(178)

(179)

(180)

(181)

With the foregoing information, namely (171)–(181), the
proper constraints on the sources, can be imposed. It is done
through the requirements that the tangential magnetic-field
components to the surface be continuous in a limiting
process just to the inside and outside of the device perimeter

(182a)

(182b)

Use of the azimuthal orthogonality property and recognizing
the similarity of the perpendicular coordinate expansions in
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both the puck and aperture (source) surface

(183a)

(183b)

where we have written out to emphasize the difference
between the puck expansion coefficients and the apertureth
coefficient, which happens to be a cosine type. Placing (175)
into (180) gives, considering first the LHS of (183a)

(184)

Next, insert the source equation (171) into (184) as follows:

“ ” integral

(185)

Retrieving in (129), the second integral in (185) can be
evaluated as follows for the OB and OT regions being identi-
cal, demonstrating the reduction of one infinite summation:

“ ” integral

(186)

At this stage, constraint (183a) can be imposed, invoking (133)
for the RHS, using the previous (185) and (186) results. The
fifth system equation, containing subequations, can
now be stated as

(187)

Overlap integrals on the RHS of (187) are determined to be

(188)

(189)

The sixth system equation containing subequations is
found by treating (182b). Place (176) into (181), obtaining

(190)

Inserting the aperture source expression (172) for the perpen-
dicular magnetic-field component into (190) gives

“ ” integral

(191)

Using (127), the outside integral second term is expressed as

“ ” integral

(192)

With the help of (132) for the puck field on the LHS of (182b),
and employing (191) and (192), the final perpendicular source
equation is written as

(193)
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The overlap integral in (193) is given by

(194)

Orthogonality relationships implicitly contained in (187) and
(193) for the puck test eigenfunctions are

(195)

(196)

D. Complete-System Equations

The six system equations, four sourceless as seen in
(150)–(153), and two with magnetic sources in (187) and
(193), may be stated in compact form in the following single
matrix formula:

(197)

A representative th element for each class of unknowns
is shown in the LHS column vector. The matrix entries are
as follows: 0 for no contribution of the subscript type of
unknown, 1 for a single entry contribution, and for a
sum of all that particular class of unknowns indicated by the
subscript. On the RHS of the equation are the source-forcing
terms. It is possible to reduce the size by analytical effort
of the system matrix (197) due to the appearance of null and
unity entries, and solve a smaller inhomogeneous linear matrix
problem, albeit with fewer unknowns determined initially. The
remaining unknowns are captured by solving subsidiary matrix

equations of generally smaller size than the reduced system
matrix.

Setting and (or the reverse)
allows for the solution of the suite of unknowns coefficients
in the column vector. When these solutions (or the reverse)
are placed in the electromagnetic-field formulas, the dyadic
Green’s function elements are generated. This may be put
down symbolically as

(198)

(199)

represents system (197) and corresponds to the
azimuthal magnetic source turned off. is the field equation
operator and produces the correct component (first superscript)
for the desired field (electric or magnetic field, indicated by
the first subscript).

It is clear that if we had only one term for each summation,
then the compressed form in (197) would represent a 66
system, and it would be possible, but extremely tedious, to
pull the forcing terms through the determinant solution for
each unknown and obtain explicit real-space dyadic Green’s
function elements. But for our problem here with incommen-
surate heights (or other geometrical dimensions), the problem
is in practice impossible to solve for an explicit dyadic
Green’s function. One would look naturally to reciprocal
space to obtain by analytical means compact explicit dyadic
Green’s function expressions. However, there is a tremendous
advantage in not going to reciprocal space, and this is that the
implicit dyadic Green’s function can be used to obtain the field
behavior directly without any transformations. Furthermore,
these Green’s functions can be used to obtain the-parameters
for the circulator structure too.

Mention is made here that the diagonal nature of the relation
between different region amplitudes in the outer zone allows
one amplitude (per mode class) to characterize the entire zone
(the “ ” amplitude was chosen). Once they are determined
by (197), the subsidiary diagonal equations (100) and (112),
stated explicitly below, may be employed to capture the “”
amplitudes

...
...

...
...

...
...

(200)

...
...

...
...

...
...

(201)

IV. CONCLUSION

Source-constraint equations have been combined with the
mode-matching technique to obtain in direct space implicit
dyadic Green’s function elements for a very general canonical
circulator geometry. The approach allows the inclusion of
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layered surrounding material beyond the radius of the ferrite
puck, as well as a covering material above the puck, enabling
a more realistic or complete description of the circulator
structure. New self-adjoint operators are found consistent with
the surrounding material having dielectric, magnetic, or simul-
taneous character. Inclusion of substrate and superstrate effects
are possible with this treatment. Assessment of vertical field
fringing is a natural consequence of this analysis approach.
Obtaining the dyadic Green’s function as described in the
paper is particularly useful because field information and
-paramaters may be found in real space, completely avoiding

typical inverse transformations.
Included in this approach are the inhomogeneous properties

of the circulator puck due to chosen radial variation of the
ferrite material parameters, nonuniform applied magnetic dc-
biasing field, or finite puck geometric effects on the bias field.
All of these inhomogeneous properties in the puck region
are naturally incorporated into the dyadic Green’s function.
Numerical evaluation should be efficient and only limited by
the well understood features of the mode-matching technique.

The geometry considered corresponds to that found when
one of two self-biasing configurations are employed using
hexagonal ferrite films [15]–[17]. The puck itself is a hexag-
onal material with the exterior zone a layered combination
of materials or the puck is spinel or garnet material and the
exterior material a hexagonal material (it may be anisotropic,
a situation not treated here). In the first structure, the electric-
wall condition above the puck is maintained by microstrip
metal. For the second structure, it is maintained by a com-
bination of the microstrip metal and low-coercivity “keeper”
plate (or cover) permalloy. Hexagonal materials include Ba,
Pb, or Sr, iron–oxide compounds. The garnets are the usual
Y, iron–oxide compounds, and the spinels are the Ni, Li, or
MgMn, iron–oxide compounds.
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