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Implicit 3-D Dyadic Green’s Function Using
Self-Adjoint Operators for Inhomogeneous
Planar Ferrite Circulator With Vertically
Layered External Material Employing
Mode-Matching

Clifford M. Krowne, Senior Member, IEEE

Abstract—Self-adjoint operators are found for the differen- Two- (2-D) and three-dimensional (3-D) dyadic Green’s
tial equations describing the z-dependent field variation in the functions were obtained which depended upon recursive rela-
medium external to the ferrite microstrip circulator puck. The s 10 find final expressions. Although these expressions are
external medium is, in general, inhomogeneously layered, consist- . .
ing of media with permittivity properties, magnetic properties, or compact .and eXp!ICIt, the recurS|_ve natur_e of the Qevelopment
both. Eigenvalue equations characterizing the radially sectioned necessarily contains embedded information, making the actual
medium outside the puck are found, as are the eigenvectors. algebraic dyadic Green’s functions immensely complicated.
When the z-dependent parts are multiplied with the radial and  Therefore, computer techniques are essential in studying the
azimuthal dependences, the complete three-dimensional (3-D)papayior of the dyadic Green’s functions. But because of the
field expressions are determined. Source-constraint equations . ) .
(representing microstrip lines) driving the circulator are then Ccanonical nature of the structure geometry, and the theoretical
combined with the mode-matching technique to obtain in di- techniques employed in the derivations, these dyadic Green’s
rect space, implicit dyadic Green’'s function elements. Mode functions lead to field evaluations between 1000-10 000 times

orthodgonalllity is empr)]oned to encourage sparsity in mhatrix Sl'}’?' faster than intensive numerical techniques like finite-difference
tem deve Opment whnere approprlate or convenient. The imp ICIt or ﬁnite'element methOdS.

Green'’s function is particularly useful because field information . L . . .
and s-parameters may be found in real space, completely avoiding .What we are desirous of doing in .th's paper 1S dropp!ng
typical inverse transformations. this complex inhomogeneous puck into a medium which

Index Terms—Dyadic Green's function, inhomogeneous ferrite, consists of r.adial zones beyond th_e circulator puck per_imeter.
microstrip circulator, mode-matching, self-adjoint operator. Each zone is made up of an arbitrary number of horizontal
layers, stacked vertically in the-direction. This arrangement
outside of the puck will constitute yet another inhomogeneous
. INTRODUCTION problem, in addition to that of the puck itself. In principle,
EVELOPING Green’s-function approaches for canonicdhe region above the puck, bounded on the lower side by an
structures can be particularly advantageous when solviakgctric wall formed by a microstrip conductor, and on the top
inhomogeneous boundary-valued problems, as is the chyea metal limiting wall, can also be viewed as a zone.
for planar circulator problems of the microstrip variety. The Such a structure as outlined above can be used to treat the
driving force occurs on thee = R surface at the point case where a circulator ferrite puck is dropped into a hole in
¢ = ¢ and z = 2’ or on a strip at¢p = ¢’. Obtaining a substrate, and possibly covered by a superstrate. Both the
explicit dyadic Green’s-function expressions is known to bgubstrate and superstrate may be broken up into layers. All
very convenient and allows extremely rapid numerical conof the material external to the puck will be considered to be
putation of electromagnetic fields andparameters [1], [2]. isotropic, but with the possibility that the cylinder above the
In those papers, the circulator was a circular ferrite puck, bptick and the layers in the radial zones can have permittivity
with completely arbitrary radial variation of the descriptiveoroperties, permeability properties (unbiased), or both simul-
parameters of the problem. The puck itself was made up taheous permittivity and permeability properties. Each radial
a number of annular rings, each with different widths, anzbne, stretching vertically from the lower ground plane to the
with different material properties for the magnetizatidf, top horizontal wall, made up of many different layered regions,
and demagnetization factdv... The magnetic biasing field is viewed as a waveguide section, with a collective radial
H.,, was also allowed to vary in an arbitrary radial mannesmwaveguide propagation constant. At a cylindrical wad: 7,
mode-matching is applied. Theindex increases in value from
Manuscript received May 1, 1997; revised January 14, 1998. j = 1 at the puck—external medium interface = R, to
~ The author is with Code 6850.3, Microwave Technology Branch, Ele_ctro,N at the last interface. The last interface may be chosen as
ics Science & Technology Division, Naval Research Laboratory, Washington . . L L .
DC 20375-5347 USA. open, in which case a radiation condition could be applied, or
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U.S. Government work not protected by U.S. copyright.



360 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998

Z external to the circulator puck. The external medium is, in
general, inhomogeneously layered, consisting of media with
I permittivity properties, magnetic properties, or both. For the
multi-layered simplest case in which each zone has regions of only one
Top Cover —— verticat zone trait (i.e., not mixed), and that trait is dielectric, information

LLLLLLLL LSS L LLLL LSS is available on the TE axisymmetric eigenvalue equation
[3], eigenvector forms [4], [5], or scalar potential governing
equations and the eigenvalues and eigenvectors using self-

ot | o O adjointness properties [6]. Eigenvalue equations characterizing
€dT paT the radially sectioned medium outside the puck are found, as
y__ew Y " are the eigenvectors. When thedependent parts are multi-
source wall —— | t plied with the radial and azimuthal dependences, the complete
0B C he OB field expressions are determined. Source-constraint equations
€dB [dB Innomo. Ferrite | Y driving the circulator are then combined with the mode-
T 77777 7777 r/ VA matching technique to obtain in direct space implicit dyadic

Green’s-function elements. Mode orthogonality is employed
to encourage sparsity in matrix system development where
o 1 The ferrite circul uding. , ) appropriate or convenient. The self-adjoint operators lead to
e e shedtor stuctue ncudng tne fegons abeve fisting funciions which may be used to test field continu-
6 = const (in 3-D). ity equations, thereby reducing some infinite summations to
single-term contributions. The implicit Green’s function is
. . , . articularly useful because field information agigparamaters
mer-matchmg conditions for the last zone’s vertically stack 2y be found in real space, completely avoiding typical
regions. . . inverse transformations.

Here we will treat a specific case of the general 3-D cgngideration of field extension into the surrounding
situation outlined in the last paragraph. The puck will be placer‘ﬁ'edium, beyond the circulator perimeter, including fringing
inside a substrate like that found in microwave monolithiguch that fields may extend out and then above the height of
integrated circuits (MMIC’s), with a ground plane boundingne circulator nonreciprocal puck, is an essentially physical
it from below. An electric wall, representing microstrip metaly,otivation for this theoretical work. The approach is a
will constrain the fields within the ferrite puck material fro”bood approximation to a very complicated geometric and
above, and this electric wall will be flush with the SUbStrachhomogeneous problem, given the irreqular effects arising
surface. Immediately above the puck will be isotropic materiatom application of the dc-biasing magnetic field and the actual
not necessarily the same as that for the medium beyofigite-width microstrip input and output lines. For narrow
the circulator puck perimeter. One zone exists beyond th@crostrip lines, the expectation that the fields extend beyond
perimeter, and it consists of the substrate on the bottom a:h@ device perimeter with azimuthal Symmetry is very good’
another material region on top, not necessarily the same gl essential to this canonical treatment. When some of the
the inner zone above the puck. The top layer, consisting of aficrostrip lines attain widths which are a noticeable fraction
inner and outer radial ordered set, constitutes the superstratethe puck radius, the error introduced by the symmetry
which could be chosen by default in the simplest situation t&ssumption for- > R for the fields will be directly related to
be air. the fraction of the circumference occluded by the presence

For the substrate being part of a MMIC, it could be onef the line itself.
of a number of semiconductor materials like Si, GaAs, or
even heterostructure material. For the case where a more
hybrid-like circuit is used, it could be an unbiased magnetic [l. SELF-ADJOINT OPERATORS

material, even the same or related to that used for the puckconsider the situation where the electromagnetic field oc-
itself. Furthermore, depending upon how the biasing magnegiGpies three areas (see Fig. 1). The first &'éa that filled by
field is obtained for the puck, the electric wall above thghe ferrite nonreciprocal material fer< R and0 < z < hc.
puck may be a microstrip-keeper metal combination to allothe second area or zorn@ has two regions for > R, a
self-biasing of the ferrite material in the puck. With the usBottom regionOB with 0 < z < h¢ and a top regiorOT
of a conventional biasing magnet, the origin of this field igith hc < 2 < ho. And the third regionl hasr < R and
considered to come from outside the whole structure, showp < » < hg. Conducting walls are assumedzat 0, ho (all
schematically in Fig. 1. Allowing for a magnet to be placed) and » = h¢ (r < R), and the radiation condition in effect
in a layered arrangement above the puck constitutes a greaker — co. Fig. 2 shows a cross section through & const
complication to the problem which will not be addressed in thigslane, with microstrip lines coming into (or out of) the ports
paper, although the theoretical principles for accomplishingcated at;, ¢2,- -+, ¢4, - -, ¢n, On ther = R puck surface.
such inclusion will be treated in this work. In order to maintain the same field structure formulas and
Self-adjoint operators are found for the differential equationmarallel construction techniques inside and outside of the puck,
describing thez-dependent field variation in the medium zongoverning equations are developed in the zoneR with the

Ground Plane ——/ >

R
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Port Np If the TM to z is selected as the basic mode electric type (out
of the two required for a complete field description) with only
the electric field existing perpendicular to the transverse plane,
this being precisely the same directional field setup inside the
puck, then (5) vastly simplifies to

Port - ferrite region
interface

e | Inhomo. Wall
P

Port 1 ( non - port)
Inhomog. 2 2 lde(z) 2,
Ferrite VI + 0z <5 dz E.)+kE: =0 0
L& (1000 10 ( 9B\ 1B 9B. 0 (lde(z),
Multi-layered external ror ! or + 72 o2 + 922 dz\e dz 7
vertical zone . 5
[ed, pd] Port 1 +k°E, =0. (8)

Fig. 2. This sketch represents a cut plane-at: const (in 3-D) for the  gjnce gl of the other field components (transverse) depend on
ferrite circulator structure. . . . .
formulas written in terms of,, only its expansion need be

. G considered first:
stackedOB and OT regions utilizing field components from

the puck in the isotropic limit. SpecificallyTM. (c-mode)  ES(r, ¢, z)
andTE_ (h-mode) equations are sought. Maxwell's sourceless

b
equations assuming“* dependence are = D Ry (r)e* AR e
V x E=—iwpH (1a) n=—eok.=f
V x H = jweE. (1b) — RS, (7‘)[eik‘ZAf£: + G—ik;zAzO_k:]eimz5

A. TM, Operator Properties

Take thecurl of (1a), noting that both: and ¢ depend =
upon spatial location, namely that= p(r) = u(r, ¢, 2) and
e =e(r) = e(r,¢,2)

VxVxE=—-iwV x (uH)
Viu(r)

e Vo e

3
>~
1l
o

Ry ()25 (2)e™?

3

%‘Mg %‘Mg gMg %‘Mg

?.
Il
o~

— 2 FE N7 E 2 _ = e . e ing
wopers + " XV X 2 = _z_: ZRnU(7)ZU(Z)G
using bothcurl expressions (1) to remove ady-field depen- o0
dence. Using an identity to eliminate therlcurl term = Z Z RS, (1)ZE, (2)e™®. 9)

\v4 . Nn=—o0 me=1
VE-V(V-E) 4+ e+ M) v xE=0. (3) N o o
H Here it is seen that the electric-field solution is the sum
Realizing that the divergence of a curl in the left-hand sidever the radial variationz-directed harmonic, and azimuthal
(LHS) of (1b) is zero, the divergence of the electric field ifiarmonic products. Thel coefficient provides the term by

(3) may be replaced by term weighting. The infinite sum ovér propagation constants
Ve(r) in forward (f) and backwardb) directions may be changed
V- E=-— -E into only a backward wave summation, but now requiring
1 di(z) explicit forward and backwardd coefficients. Superscripts
=—- ;- B “—" and “+” added to theA coefficients store that wave-
idg(i) direction information, letting the subscript propagation index
== d;: E.. (4) being simplified to merely:, = &. This process is collected

) | together in the next line. Recognizing that in each zone only

Equation (4) has been obtained from the general spafgé radial propagation constantis definable (and, therefore,

variation being reduced to that in only thelirection because capable of being indexed over the entire zone), but that

of regional changes within a zoneOI(gi.e., for a two-region ZORgyies from region to region within a zone, the fifth line

as belngOTconS|dered here(z) = e~ for 0 < z < h¢ and  is optained. Finally, ther solutions to be determined later

e(z) = ¢4 for he < z < ho with a discontinuity ak = ). can be assigned for the solutions, index numbers ordered as
Inserting (4) into (3), the vector electric-field governing,, — 1 2 ... co. The associations faE¢, (z) in (9) can be

equation is found: summarized as
viE+v(1EE ) e 1) 75, (2) = Z5(2)
e dz wodz me v )
=75 (2
10E. OEy\;, 10E, OE.\.| _ L& ‘
{(7_ op 9z )dJ_ <7_ 9z  or )7} =00 ZGZk:ZAZ%: +6_Zk:ZAfi(13j_

k% = wlue = wu(r)e(r) = w?u(2)e(2). (6) =M AR + G_ik‘ZAZ?_k:. (10)



362 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 4, APRIL 1998

Now, inserting (9) into (8) and applying separation of ho li du ()d
variables, with o Yoz \"az )TV
e __ O 2 ho
A = —(o3,) (11) +/ [ d <1 de) + k| e(2) dz
. . 0 dz \ e dz
acting as the separation constant ho ho
1d du
1d n2 = Chbrl o e(z)dz + vg(z)ue(z) dz
() = (N, + 7 ) i (1) =0 o ed:\'d: :
rdr e e e ho
d ( du
(12) :/ v\ dz + (qu, u)
Pz, () d (1de O N
Elm®) 2 z + (K2 4+ X6, )ZE, (2) =0, ho
dz? +dz{5d7 me (2 )} (4 A ) 2. (2) :/ vd(ejﬁ) + (qu, u)
0 9

(13)

ho du du
Select the first two derivative terms of (13), plus the first of = A d Ll B dv ¢ +(qu,u)
the last bracketed sum, as the inhomogeneous linear operator

ho ho
Ly = wve du e— dv + (qu,u)
2 df1de o Jodz
Lty = k2. 14 d d

M= 22 + d7{5 d7[]} + (14) = v(ho)e(ho) u(ho) — v(0)e(0) dz (0)

Invoking (14) enables (13) to be recast as ho gy,
- / e— dv + {qu, u)
LonZy, (2) = =X, Zn, (2). (15) o dz

ho d
Operator equation (15) is in eigenvalue form, the eigenvalue= —/ dv + (qu,u)
operator on the right-hand side (RHS) of the equation merely 0}
i i iati it ro du dv
the eigenvalue constant. Requiring the radiation condition to_ _ (qu, )
hold as” — oo makes o dedz

ho
RE, (1) = Ku(o9. 7). (16) = —/ EZU du + (qu, w)
0

¥4

Next, let us find the adjoint of. to better understand the ho v
behavior of the inhomogeneously loaded waveguide zone. ForF- — {d[%—} - ud[ Iz } } (qu,w)
ease of mathematical argument and brevity, abbreviate two ho ;L
different Z;,, (z) solutions asy and v and define the inner ug_ © [ } (qu, )
product on the interval0, ho) as dz |,
ho _
(v, u) :/ w(z)vu dz 17) = —ulho)eho ) (ho) +u(0)e (O) dz (O)
0 ho
+ ui sdv + {qu,u)
with weight w(z). To find the adjoint, study 0 dz \ " dx
. ho . 18 B /ho ui Edv + (qu, )
(v, u)—/o w(z)v{Lu} dz. (18) =/ L\ qu,

Sometimes it is convenient to explicitly place the weight in _ /ho u[li<5@> d <1 ds) +I€2U:| e(2) dz
the bracketed expression when we wish to be reminded of ./ edz \ dz Ydz\ed o
its presence, as ifwv, Lu). Anyway, we seek to convert (18) ho T2y d (1de y

into the form(L“v, ») by repeated application of integration by = / [sz d7{gd } +k v} ue(z) dz
parts and thereby identify the adjoint forht¥ of the operator

= (L% . 20
L. The weight we choose here is (Lwv, u) o ,( ),,
From (20), the adjoint form of the operator can be identified
w(z) = e(2). (19) as
Therefore, Ly = Loue (21)
(v, Lryu) Thus, it is seen that the operator is self-adjoint [7]-[9].
ho Ty d (1de Equation (21) was obtained by using a nhumber of boundary
:/ v WJFE{EEU} + k2 } (2)dz conditions, which will be briefly covered in this section.
0 L < < <

e - ) Electric-wall conditions atz = 0,ho require transverse-
_ [ |1 du ldedu d (1de 2 field componentsE, and E4 to be zero. From thek-field
= v|—eo—H+ = ——+tu +ku|e(z) dz _

0 le dz? edzdz dz\edz component expression [10], e.g.,

ho 11 d [ du d (1de ) aHO p; OEO
_ Py zj
_/0 v 5d7< dz>+ d7<5d7)+k } e(z)dz E¢J 7 or t r J¢ (22)
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one observes that pure Neumann conditions hold at the endsectric regions, magnetic regions (unbiased), or intermix
of the inner product domain. This conclusion follows becauskese two types of regions, or even if we further complicate the
(22) originates when exponential (harmonic, plane waves) aiguation by using regions with both dielectric and magnetic
chosen for the-functional behavior. Thus, the coefficient, characteristics.

from the second piece &, generating the TM mode, indexed
for j z-directed modes, contains ah, factor, implying the .
presence of a partial derivativé/dz operator. B. TE. Operator Properties

Following the philosophy of theIM. development in

d d
dz (0) = d—z =0 (23a) Section II-A, take thecurl of (1b):
~ “ lz=0
@( o) = v =0. (23b) V x V x H=iwV x (eE)
dz dz | _pe Ve(r)

_ .2
The same conditions, of course, hold fer Because within =wipeH + ——=xVxH  (28)

a region of a zoneg(z) is stipulated to vary continuously, _ _

and for the zone to vary, at most, piecewise continuoush$ing bothcurl expressions (1) to remove al§field depen-
because the discontinuities only occur at the region interfacdgnce. Using an identity to eliminate therlcurl term

de /dz will be well behaved at the domain ends. Furthermore,

requiringe(z) to be constant within a region makes a Neumannz2 V(Y- H)+w?ucH + Ve(r) «VxH=0. (29)

condition also hold for it. Thus €
d d
d—E(O) = d—g =0 (24a) Realizing that the divergence of aurl in the LHS of (1a)
z #lz=0 is zero, the divergence of the magnetic field in (29) may be
ﬁ(ho) — de —0. (24b) replaced by
dz dz |, _pe
Neumann conditions (24) otie(z)/dz are not required for V-H __ Vi) ‘H
obtaining the self-adjoint relation (20). This is also the case M
for TE modes, as will be demonstrated later. _ 1 dp(z) , "
It is emphasized here that althoudhry; is self-adjoint, T
it is not representing lossless media. The media can be 1 du(z)
dielectrically lossy, magnetically lossy, or lossy in both regards __; dz H.. (30)

simultaneously. Thus, the eigenvalue in (15) may be complex.

In fact, for ordinary media, we expect it to be complex. NowEquation (30) has been obtained from the general spatial
let us review in light of this fact, the short derivation ofvariation being reduced to that in only thedirection because
orthogonality as implied by self-adjointness. Consider that any regional changes within a zone (i.e., for a two-region zone
self-adjoint operatod. obeys as being considered herg(z) = u$® for 0 < 2z < h¢ and
1(z) = pQ7 for he < z < ho with a discontinuity at = h¢).

{Lu, v) = {u, Lv). (25) Inserting (30) into (29), the vector magnetic-field governing
Let equation is found:
Lonu ==X, u (268) vy +v<l dpu(z) H) Lep g L)
Lonv =—XE,, v (26b) pode e dv
‘ 10H. OHz\, (10H. OH.\.\| _
associating, andv with, respectively, the eigenvalue indices ' {(7 o6 Oz >¢ - <; 92  Or )7} =0.
m. andm’. Placing (26) into (25) yields (31)

(= A0 1, 0) = {4, =A% 0) If the TE toz is selected as the basic mode magnetic type with
or only the magnetic field existing perpendicular to the transverse
plane, then (31) greatly simplifies to
( fné - )‘fne)<u7 U> =0

or VQHZ + 7] <i dN(Z)HZ> +/€2HZ -0 (32)

Oz dz
{u,v) = 0. (27) or

Orthogonality relation (27) holds precisely because the }3(7,315&) 1 °H, N O*H. 9 <l du(z)H>
eigenfunctions are associated with different eigenvalues. In our dr \ ' Or r2 9¢? 922 Oz\p dz 77

case, the eigenvalue difference is between different complex 4 2y — g, (33)
eigenvalues. Relation (27) says that theigenfunctions are

orthogonal no matter how many different regions are stack&thce all of the other field components (transverse) depend on
in a zone, and this is true regardless of whether we use ofdymulas written in terms of{., only its expansion need be
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found: Requiring that the radiation condition to hold again-as ~o
. makes
H(r, . 2) , .
Rr;l] ( ) = Kn(o—rnh T)' (41)
_ Z Z R zk 4AhO ing
e Next, let us find the adjoint of. to better understand the
behavior of the inhomogeneously loaded waveguide zone. For
— Z Z Rh [eF=2 AhO 4 e thez AhO ]eimzb ease of mathematical argument and brevity, again abbreviate

two different Z”, (z) solutions asw andv and use the inner
o0 ‘ ‘ ‘ product definitions (17) and (18) on the interv@l ho). Wi
= > > REy ([eMFAMYT 4T ARDHEm seek to convert (18) into the forkd v, w) in order to |dent|fy

n=—oo k.=b

n=—00 k,=b the adjoint formL® of the operatoll. = L. The weight we
) choose here is

— Z Z R Zh ) ing

n=—oo k,=b UI(Z) = /J(Z) (42)
= Z ZR P2 (z)e™? Therefore,

n=—oc o <U7LTEUI>
= Z Z Rl (r)Z}, (2)e™. (34 ho Ty d (1ldp )

n=—o0 m; =1 :/0 v = E{E o u} +k u} w(z) dz

Here it is seen that the magnetic-field solution is the sum _ /hov'l Fu  1dpdu ui <l du>

over the radial variationz-directed harmonic, and azimuthal — J, _uusz wdz dz dz \ p dz

harmonic products. The solutions to be determined later, )

more correctly denoted as,,, , are assigned for the solutions +k u} w(z) dz

index numbers ordered as;, = 1,2, -, c0. Solutionse,,, ho 114/ du d/1d

are different than,,,, for the TM_ case. The associations for — / v < >+ < ’“‘) + /&4 p(z) dz
0

zl (z) in (34) can be summarized as Ldz "z de\ i dz
= /ho vli du (2)dz
Zr}:lh( )= Zf;(z) —Jo wdz ud7 ) az
h h
=2y (2) ° [ d(1ldu )
:cik;zAzgy— } e ikez gRO+ "‘/0 { d7< e ) + k| p(z) dz
_ ikez 4RO “ikez ghO ho ho
=ec Ank; +e An,—k: . (35) = /0 Ui% < ;lq:)u(z) dz + /0 U(](Z)U/N(Z) dz
Now inserting (34) into (33) and applying separation of ho
variables with —/ vi du dz + {(qu, )
Jo  dz Faz )@ T
R _ O 2 ho
A = —(0m,,) (36) = / Ud(ﬂdu> + {qu,w)
0 dZ
acting as the separation constant ho du du
=/ {d[vu } —p dv}+<qv,U>
1 d ; ; 712 ; 0 dZ dZ
PR )= (Vo + 3 ) = — o] A
e M, = qu,
dQZr}:l (Z) df1l du h h h = du du
— T+ d7{u i, (7)} + (KN 2 (2) =0, = v(ho)u(ho) 7= (ho) = v(0)u(0) ~(0)
ho
(38) - /0 uz: dv + {qu, u)
Select the first two derivative terms of (38), plus the first of ko qu
the last bracketed sum, as the inhomogeneous linear operator — o " dv + (qu, u)
LTE: _ /ho du dv " N <qv u>
2  d(1ldp 7 ), Fazdz
Lirp = — +—3 = 2, 39
" d22+dz{udz[]}+k (39)

ho
—— [ e dut tgv
, Mz

ho dv dv
LrpZl, (z) = =ML 2k (2). (40) /0 { [uudz} u [udz} } + {qu, )

my, my,

Utilizing (39) enables (38) to be recast as
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_ v Mo ho d dv and continuity conditions on the azimuthal components of the
-, L S e g {qv.w) electric and magnetics fields
eQy ., _ eOy,.
:—u(ho)u(ho)z (ho) + (0),40)?(0) EG(r, ¢, 2)lhet = E57(r, ¢, 2) he— (49)
o (e ) HO(, 6 Dlnes =HOw 6, 2)be (50)
+ /0 U <u5) +(qu,w) Ego can be written using the third-line form of (9), and (22):

ho g ( dv ka
—/0 U@(N@) + {qu, ) ¢, % Z Z

n=—oo k.=b

ho tk.z 40— —ik,z 4eO47 ing
= / " 1d N@ + vi Ldp + k20| p(z) dz etEATT —e AT le (51)
0 wdz\" dz dz \ p dz where
ho dQU d 1 dl/L 2 'Lk»
:/0 {sz + d7{ P }—i—k v} up(z) dz pj = m (52a)
= (LG, u). (43) .
T s = k;”“;j? (52b)
From (43), the adjoint form of the operator can be identified
TWEey
as u; = k2 k2 . (52c¢)
Lty = Lre. (44 The comparable$ expression to (22) is [10]
Thus, it is seen that the operator is self-adjoint. Equation (44) HO. p; OH, 3 u'aEZOj (53)
was obtained by using a number of boundary conditions, which T B¢ T or
will be briefly covered in this section. Electric-wall conditions o 0 ¢ (r)
atz = 0, ho require transverse-field componettsand £, to Hi™(r,¢,2) = Z Z -
be zero. From the,-field component expression in (22), one n=—00k.=b
observes that pure Dirichlet conditions hold at the ends of the AT + e R AT (54)

inner product domain. Coefficient;, from the first piece of

E, generating the TE mode, indexed fpe-directed modes Electric-wall boundary conditions (47) and (48) yield with the

has noik. factor, implying help of (51)0 .
TR 0N — eI A0 =0 (55)
(0) =0 (45a) D _ oo o sty
v(ho) = 0. (45b) .

These conditions have resulted from the global nature of the
The same conditions hold far. Because within a region of aradial o,,, propagation constant an. index, allowing the
zone,u(z) is stipulated to vary continuously, and for the zoneadial function and factors depending only on this index to
to vary, at most, piecewise continuously, because the discomliop out of the equations. SuperscripfE’“and “B” denote,
nuities only occur at the region interfacek/dz will be well  respectively, the top and bottom regions in the outside zone.
behaved at the domain ends. Furthermore, requitifl to |t should be realized here that has an implicit dependence
be constant within a region makes a Neumann condition algg ;. so that when we see the perpendicular propagation
hold for it. Thus constant, it is understood that it constitutes an abbreviation for

du du EQT  (for the top region, for example).
dz( )= dz|._, =0 (46a) Continuity conditions (49) and (50) become, using, respec-
dy dy tively, (51) and (54)
(ho) = =0. (46D) | kOThe 4eOT—  —ik®The 4eOT+7,0T
dz dz 2=ho [ “ "Lln'rne —c ¢ Anrne ]k
:[ kOB he A;%E— —zkoth Azgg'i']k.ZOB (57)

Although (46) holds, conditions odu(z)/dz are not needed o
for obtaining the self-adjoint relation (43). This is like the casg’*> ¢ ASOT— 4 =ik he 4eOT+]OT

NMe NMe

for the TM mode, where (24) was not required. = [¢fkE OPhe geOB— 4 —ikOPhe AOB+].0B  (5g)

Adding and subtracting these two equations from each other

] and utilizing (56) gives the top-region amplitude coefficients
Eigenvaluess,,, of the TM, modes, and the consequent

OB OB
values of A, , can be found by applying the boundary 4<0T~ — le—ik?ThG{eik?th {5(1 ks }

C. Eigenvaluess,, of TM,

conditions on the electric-field component 2 T RO
—ikQth E(?B kOB AeOB—
EgO(T’ ¢,2) =0, z=ho (47) e (?T EOT nm.
EP(r,¢,2) =0, z=0 (48) (59)
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cor+ _ L inoThe {eik?th {ﬁ_ k?B} down in the following two ways:
e 2 eqt ko7 OB OB
0B OB €q oT z OB
1=k he {Ed__i_ k2 } }AeOB—' ~OT tan [k hi] = ~ 40T tan [k P hol (66a)
EOT kQT NNe d z
¢ oT |OB
(60) z —tan[kOThy] =-S5 tan[kQPhc].  (66b)
It is also helpful to define a ratio of the two amplitudes €d €d
ROT _ ALQTF 61 The first form of this tangent relationship is written in terms
e T ASQT- (61) of the propagation constant and dielectric ratios. The second
so that form relates the top-region quantities to the bottom-region
ROT _ o2k Th guantities. Equation (66b) can be shown to have the same form
e TC 7 as indicated for a stacked inhomogeneous dielectric zone [6].
ei’“?BhG[ﬁ 3 k?B} —i—e_ik?BhG|:ﬁ 4 kSB} But we must be aware that now the material of the regions
QT kOT eQT  EOT can be dielectric, magnetic, or of mixed permittivity and
o [€9P OB _omn | €98 kOB permeability c;haracter. The transpendentgl'eigenvalue equation
e*h: LCLO—T + kOT} +eTtrz LC'LO—T - kOT} for the TE. will be seen later to differ explicitly from the pure
d i d i (62) dielectric form even though th&M. has not.
That (66) or (65) constitute eigenvalue equations cfﬁ,re
Similarly, referring back to (56) can be understood if the separation equations are found from
ROB _ Ag%Bf _ 63) the diﬁeren;ia}l governing equgtion (13) far, wjth the h.elp
e T 4e0B= T of (10) providing the exponentid;,, form. Inserting (10) into

NMe

Insert amplitude relations (59) and (60) into the electric-w
condition (55) to find the characteristic eigenvalue equation

aq 3) for the top and bottom regions in the zone, realizing that
the inhomogeneous dielectric constant term drops out inside
each region, yields

ik?T(ho—hc:) —ik?tha ES_B kzOB OT\2 OT\2 e -
€ € EOT + kOT _(kz ) + [(kd ) +)‘rne] =0 (67&)
d z e
Lony [OB OB —(B2P)? + (k)" + X1 =0, (67b)
te C’Lc)—T—kOT” _ _ _
d % Invoking (11) for the separation constant, and taking the
=ik (ho—he) { ik e eg” K9P positive branches in (67), gives
QT EOT
_inompe [eg" | ROP EOT = (kgT)? - (o )? (68a)
4+ e O o7 T =0.
€ kOT B
¢ - kKO =/ (k9P)2 = (00,2 (68b)

(64)

Keeping the bracketed groupings in (64), identifyig =

EOThr + kOBhc and by = k9Thy — k9B h¢, the exponential
transcendental eigenvalue equation can be converted to t

Inserting (68) into (66b) gives a single transcendental equation
in terms of the unknowm,?le. Material-region propagation
cRgstants are delineatable once (6) is examined:

following trigonometric form: (kdOT)Q _ WQN(?TEST (69a)
kOB OB (E§B)? = wPuGBeQB. (69b)
: [1.OT OB 0T — _OT
= [kZOThIJrkZOBhC] = /szB E‘éB. (65) Return to the amplitude rati&®™. Following the same
sin (k9T hy — kPBhc] KL 4+ 54 reasoning in finding (66) using grouping ByY"/k9T and
EOT gt e9B/eQT, yields (70) shown at the bottom of the page.

Eliminating the bottom-region information in (70) by using

Here, hr = o — he. Note that for the limiting case wherey,q gigenvalue equation form (66b), the compact formula
the top and bottom regions become identical, the numer-

ator becomes zero and (65) reduces to the familiar form
sin [kYho] = 0. Another useful form may be obtained by

grouping according to the ratios?B/k9T and 9B/e97.

GQik;OThC 1 + Z tan (kZOThI)

oT _
R = 1 —dtan (k9T hy)

(71)

Again, the exponential transcendental eigenvalue equatiorrésults. Using ratio grouping and (66), the backward and
changed into a trigonometric expression, which can be detward amplitude coefficients in (59) and (60) for the top

2ik°The 0" /g ] cos (kPhc) — i[kDP /K] sin (KPhc)
[eg®/eq ] cos (kOBhe) + i[kOB /KO ] sin (k0P hc)

ROT =¢ (70)
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region are now Continuity conditions (76) and (77) become, using, respec-
tively, (78) and (79)

NN

OB
eOT— _ Cd oT —ik°Thaypq _ oT
A =0T cos (k2" hc)e {1 —dtan (k2" hr)} kOTho gROT— | —ikOThe 4hOT+

d [ nrn] - nmy ]u
OB— 4
e (72 e g8 4 e 408,08 (g)
oT oT
AT = cos (KOThe)e™ e {1 4 tan (K0T hy)} [ ’LCAZSJ— Ca ’L<A225+]kOT
© €
d ikOPhe ghOB— _ —kOBhc 4hOB+1,.0
AZQE—' (73) - [ < Arirnl]? < Arirn]]g—i—]kz B' (83)

) Adding and subtracting these two equations from each other,
D. Eigenvaluesr,,, of TE. and utilizing (81), gives the top-region amplitude coefficients
Eigenvalues,,, oftheTE, modes, and the consequent val- o
h _ 1 _g0ry [ oB pQB  EOB
ues of);, can be found by applying the boundary cond|t|on§4hOT etk T ho ) ik he | Bd z

on the electric-field component NST kT
OB NOB k.OB
EL(r¢,2)=0,  z=ho (74) -t [—éT - kéT} }AZSB?‘
ud z )
EC(r.¢,2) =0,  2=0 (75) (84)
OB OB
and continuity conditions on the azimuthal components of the/ 0T+ — 1 = e~k he {eik?th [“d _k: }
2 orT kOT
electric and magnetics fields Hq
hO LO —ikTPho pgo | KO8 AhOB—
E ; ( ) 7Z)|hc;+ :E ; ( ’ 7z)|hct— (76) e NST ]{;OT nmy
Hho( ) 7Z)|hc;+ Hho( ) 7z)|hct—' (77) (85)

EL© can be written using the third-line form of (34) and (22pefine a ratio of the backward and forward wave amplitudes

as follows:
hOT+

oOT nImy,
EOG Z S - Sk AR, (r) Ry, AhO]T— (86)
’ nmy,
n=—oo k,=b
. [eik;zAhO— + e—ik;zAhO+]ein¢ (78) so that (87) results, shown at the bottom of the page. Similarly,
ks ks ' referring back to (81)

HJ° can be expressed using the first part of (53) as on hOB+
Ry Ahog_ =-1. (88)
hO Z Z ka R ) nmy,
n=—00k.=b Insert amplitude relations (84) and (85) into the electric-wall
et AROT — gmikez gROFing (7)) condition (80) to find the characteristic eigenvalue equation
Electric-wall boundary conditions (74) and (75) yield, with eik?T(ho—hc:){eik?th [NSB kQB}
the help of (78) pQT k9T
. _1.0Bp o /f,OB
ok ’LOAZSE_-F —ik0 }LOAZSE+ 0 (80) _ o—ikOPhe [ZéT kéT}}
zk OB.0 4hOB— —ikOB.0 AhOB+ _
Anmc e A" =0 (81) — kI (ho—ho) ) LikOP ke g _ kP
g ¢ ¢ OT ~ 7OT
These conditions have resulted from the global nature of the Hd z
radial ,,,, propagation constant amn; index, allowing the _ ik pgt RPN 0
radial function and factors depending only on this index to pQT o kOT
drop out of the equations. It should be realized here that (89)

k. has an implicit dependence on;, so that when we see
the perpendicular propagation constant, it is understood thaKieping the bracketed groupings in (89), identifyifg =
constitutes an abbreviation féf’T (e.g., for the top region). k9T hr + k9Bhc and @y = kOThy — kOBh, the exponential

Zmy,

OB OB OB 0B
kP he |:Nd k3 } — o~ ikPhe |:Nd k3 }

ROT _ ,2ik%"ho 1 KT 2 KT (87)
hoo= OB ,.0B OB OB
cikOBhe [Hd 4 Vs k0B | Hd s
pQT T ROT pQT ~ EOT
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transcendental eigenvalue equation can be converted to Bbieninating the bottom-region information in (94) by using
following trigonometric form: the eigenvalue equation form (91b), the compact formula

ng> _ ke

sin [kOThy + k9Bhe]  pQT  EOT

_GQik?Thc 1 + ¢ tan (kZOTh’I)

OT _
B = 1 — i tan (kOThy)

(95)

- = . (90)
sin [kOThr — kOPhe] — p® +@ results. Using ratio grouping and (91), the backward and
pgT o ROT forward amplitude coefficients in (84) and (85) for the top

- . region are now
For the limiting case where the top and bottom regions becomeq

identical, the numerator becomes 0 and (90) reduces to the . pQB sin (k9The) _0m, , oT
i ‘0 1O _ oy = —e = e R ] gtan (k) h)}
familiar form sin [k’ ho] = 0. Another useful form may be “*nmu. 4 QT tan (kOThr) z
obtained by grouping according to the propagation constant 4HOB- (96)
and permeability ratiog®®/k9T and 1GB/u$T. Again, the g,
1 I 1 I I oB sin (/fOTh ) _:.0T .
exponential transcendental eigenvalue equation is changed infeor+ _ _ Hd =€) —ikCThe (1 4 jtan (EOTH
. . . . . nmy, L OT +ou (LOTH Y - { +1 an( z I)}
a trigonometric expression, which can be set down in two pd* tan (E9Thr)
ways as follows: . AROB- (97)
nmy
ng* el k2T OB
MZOB tan [k hy] = — o5 tan [k he] (91a) E. Eigenvectors off M.
QT OB Return to (10), extracting out the third exponential wave
kg)T tan [kOThy] = _kjﬁ tan [E9Phg].  (91b) form. Factor out the backward wave
o Lo ACOT
The first form of this tangent relationship is written in terms Z8, (2) = |e™=7 ek Z% AL, (98)
of the propagation constant and dielectric ratios. The second Api.

form relates the top-region guantities to the bOttom'reglq}i'/riting (98) in terms of the different regions (two here), using

quantities. Equation (91b) shows that the magnetic differenc[%se definitions (61) and (63)
between regions in a zone appear explicitly in the eigenvalue

equation for thél'E, modes, whereas (66b) demonstrated thatZ;;l (2)
the dielectric differences between regions in a zone appear °
explicitly in the eigenvalue equation for tAEM . modes. — {

NnMe I
1, OB _;LOB _
ik "z +e ik 4R€QB]A60B 0<2< he

nMe

[eik?TZ + e—ik?TzR?T]AeOT— he <2< ho
That (91) or (90) constitute eigenvalue equationsdﬁlrh [

can be understood if the separation equations are found from [H7% 4 o~ hOTEROTI 40T po < o <

NnMe

the differenti_al_governing equatipn (38) f@r,’;lh with t_he help = 2cos (KOB2) AcOB~ 0< 2 < he
of (35) providing the exponentiak”, ~form. Inserting (35) O o S e
into (38) for the top and bottom regions in the zone, realizing — {[6 : SFBG FORIR,T, he<zs ho}
that the inhomogeneous permeability term drops out inside 2cos (k%2), 0<z<he
each region, yields CASOB-
_ 76 AeOB—
_(kzOT)Q + [(kc(‘l)T)Q + )‘Zlh] =0 (922) FlzkorT”:_i_ —ikOTZROT] ha<z<h
e e z z e —

— (K9P + [(K)? + AL, 1 =0. (92b) = {2cos(kng)R§g—f 0<a<ho } e

Invoking (36) for the separation constant, and taking the :Zjne Ajl%Te—, (99)

positive branches in (92), gives
The fourth and sixth forms of (99) created the scaled for-

kST :\/(I{;dOT)Q — (09 )2 (93a) mulas for the eigenfunctions, separated from the unknown
" coefficients found inZ;, (z). Known ratios

kOB — \/(kdOB)Q — (69,)2. (93b) A€OT—
R N _ RP = (RpI)™ = 5 (100)
Inserting (93) into (91b) gives a single transcendental equation e e Anl™

in terms of the unknowwy), .

Looking at the amplitude ratingT in (87) again, using the
same procedure in finding (91) using grouping A2 /9T
and g™ /g™

available from (59), enable the unknown fields to be written in
terms of one unknown amplitude for each zone (one external
zone beyond the circulator in the current problem). The scaled
forms are related to one another by
ROT = o2ik T he —e
' 4
i@ /1@ Jsin (kOPhc) — [0 /KO Jeos (k0P hc) "
i[uGB /ugTsin (kOBhc)+[kOB /kOT|cos (kQBhe) ™ Retrieving (71) and (72), the first scaled eigenfunction (the
(94) generator for the eigenvector) form in the top region can be

_=RBT-Z, . (101)
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evaluated, completing its explicit formula product expression in (105) to

€

Zo (2),Z. (2
5(?13 COS(/{;,OB hC) < me(7)7 me(7)>

ZMe oT
76 B 2_{—:ST —COS (kZOnTl hI) COs (k'zrne [Z — hO])7 (102) _ 4(6813)2
me ~ he <2< ho (o )2 = (09.)?
2 cos (k9B 2), 0<z<hg. 1
o) =F= { s, on (92 ) ~ K5, (980
d
One can easily show that (102) corresponds directly to a 1
. . .. . iy s . oT orT oT oT
continuity condition at the: = h¢ interface if it is multiplied + —EST [k, van (ko hr) — k2 tan (K2, hl)]}

by e(z), thereby satisfying the normal component of the

OB OB
displacement field continuity % cos (K2, ho) cos (hzy he)

ZMe
=0

DEO(r, b, 2) ot = DEO(r, b, 2) e - (103) ' invoking the eigenvalue equation (66). Thus, we have verified
(104) directly.
Enlisting (99), the orthogonal property fafc, (2) given by ~ The orthogonality relation may now be stated as
(27) carries over t@Z,, (z), i.e., T (), 75 (2)) = CE, 6,

’
me Yme,m’ -

(107)

(Z8 (2), 25, (2)) = <7€ (2) 7° ,(2)) = 0. (104) Let us borrow the RHS of (105), and particularizeitp = m/
me\Z)s Lmy e T to obtain the square of the normalization constant which is

L . . . L equal toCy, :
It is instructive to verify that (102) indeed satisfies (104). ‘

Proceeding,

ZMe

ho
Crn. :45(?3/ cos? (KO8 2)dz
0

(Zn, (2): Zpy (2)) LalE ? oreos® (ROn hc)
Sd_| OTZ2 \Pame CJ
ho . eQT] "¢ cos? (KO hr)

— [ 7020 o
0 [ ot (49 o - 2] d
h

hc
:450B/ cos (k9B 2) cos (k98 2) dz ©
d 0 ( Z1Me ) ( zm/, ) E(?B cos2 (k_zon]?e hC)

:45913{116 i 126} (108)

W PRIC TRLLC 8 T o (S5 )
eg" 4 cos (kOn. hr) COS(/szm; h) where [11]
ho
. oT _ oT _ hc
| eos 58 o = 2 con (% o = <D= T
(105) 0
EOB p
Referring to a compilation of integrals [11], the first definite Z’;};
integral in (105) is evaluated to be I, = / cos? (k9T [ho — 2]) dz
heo ¢
he 1 (1. kg, h
/ cos (kO z) cos kzonl?,e z)dz = or [Z sin (2k5, hr) + T} . (109b)
0 ZMe
_ 1 OB _: OB OB i
= (708 )2_(]{25 B [kme Sm(/gzme he) cos (kmé he) F. Eigenvectors oflE, | | |
© e Go back to (35), extracting out the third exponential wave

form. Factor out the backward wave

z ZMe

- konl?,e cos (k9B he)sin (k?nl?,e hc)] .

Zh _ kO —ikOz Az;?j AhO— 110
(106) my, (z) = [e™=7 + e AP0 | ( )
nk.

Referencing the integration variable in the second integrdffiting (110) in terms of the different regions (two here),
to the = ho top plane, and making appropriate constattSing the definitions (86) and (88)

changes allows the use of (106) again. The difference between (2)

perpendicular propagation constant eigenvalues in the differefit' Cor Cor

regions, which act as a prefactors in both integrals, are found_ ) [¢" * + ¢~ *RPT]AROT—, he <z < ho

to be equal by (67) tdo2,)? — (60 )2, reducing the inner | [¢?*<"% 4 =K"= ROB| 4hOB— 0<z<he

’
m., Me nmy,
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TE g ik T‘ROT]AZSE—, hca <2< ho Referring to a compilation of integrals [11], the first definite
2L sin (k9B z) AROB— 0<z< he integral in (117) is evaluated to be
zk Tz —ik®T 2 pOT] PTB— he
+e R ]R"lh ’ h’C S z S h’o : OB OB
{2L SlIl kOB 0<z< hC 0 S1n (kzrn] )SlIl (kzrngbz) dz
. AhOB— 1 OB OB
nmp k sin (k> h
Zh hOB— (k?nl?l) (k?nl? ) [ zm), ( zmy, C)
= my < tnmy, ¢ h
B [Gik?TZ + —ikOTzR}?TL he < 2z < ho hOT— - cos (km’ he) — k?nl?] cos (k?m] hg) sin (km’ he)l-
~ | 2isin (k9B2)RET, 0<z< he T (118)
:f’b ROT— (111) Referencing the integration variable in the second integral
my < tnmy,

to the = = ho top plane, and making appropriate constant
The fourth and sixth forms of (111) created the scalashanges allows the use of (118) again. The difference between
formulas for the eigenfunctions, separated from the unknowerpendicular propagation constant eigenvalues in the different

coefficients found inz!, (z). Known ratios regions, which act as prefactors in both integrals, are found
hOT— to be equal by (92) t4o$), )* — (o5, )?, reducing the inner
R = (R = Azg’g (112) product expression in (117) to
Zn, (2))
available from (84), enable the unknown fields to be wntterg ma (2); m
in terms of one unknown amplitude for each zone. The scaled —4(uQB)?
forms are related to one another by B (ag, )2 —=(09,)?
s .
_h
= R2I-Z) . (113) { 5[KOD cot (kOB ha) — kSR, cot (KO8, he)]
Retrieving (95) and (96), the first scaled eigenfunction (the d
generator for the eigenvector) form in the top region can be [k?m; cot (KO, hI) k?,,T” cot(k?,,Tl] hI)]}
evaluated, completing its explicit formula _ ’“‘d oB _
LLOB sin (IfOB hC) oT X sl (kzrnh hC) S1I (kzrn’ h’C)
Zmy, .
7 LNdT Sin (k0T i) sin (k3 [z — hol), =0
me T " ha <z < ho invoking the eigenvalue equation (91). Thus, we have verified
2isin (k95 2), 0< 2z <he. (116) directly.
(114) The orthogonality relation may now be stated as
Equation (114) can be shown to correspond directly to a —h —h h
continuity condition at the: = h¢ interface if it is multiplied (Zm, (2); Ly (2 (#)) = Cm, 6’"’_“’"h' _ (119)
by u(z), thereby satisfying the normal component of tBe Let us borrow the RHS of (117), and particularizentg = m;,
field continuity to obtain the square of the normalization constant which is
hO hO equal to Cf}:ll :
Bz (Tv ¢7 Z)|hc:+ = Bz (7‘7 d) Z)|hc*—' (115) ho
hoo_ OB OB
Utilizing (111), the orthogonal property faz, (z) given by Co = =414 /0 sin? (k. 2) dz
(27) carries over toZm] (z) when using the proper weight OB sin (kOB he)
function in the inner product construction, i.e., - 4{ OT} . X
— — 2] SlIl (kzrn hI)
(Z0, (2), Dl (2)) = (Zy (2), Zy (2)) = 0. (116) ho
" " " " . / sin® (k9x [ho — 2]) dz
It is also informative to verify that (114) does satisfy (116). he
Proceeding, OB kOB
—h —h :—4NOB{Ilh l’LéT Sln ( ZOT7¥ C)IQh (120)
(Z (2, Zy (2)) " sin® (KG7, hr)
ho _, . where [11]
— [ 20,20y I 2 he
0 5 " Ilh = / SiIl2 (kzonl?hz) dz
fe} 0
= 49" /0 sin (k9. #) sin (k?m/ z)dz 1 1 (2498 hoy 4 k?nl?h he (1212
sin m
{ OB} orsin (k98 he) sin (K370 ho) A e 2
4 Zm
oT d OT oT ho
a sin (o ). i (R, ) T = [ sind (93, [ho - 2 =
ho he
. / sin (k9T Tho — A1) sin (KO, [ho — ) dz. ) or
h

L kznthI
o i = o [ £ S (K57, ) + T’] (121b)
zZmy,
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I1l. IMmPLICIT DYADIC GREEN S FUNCTION CONSTRUCTION

A. Fields for Puck, Interior, and External Zone Interfaces

Electromagnetic fields to be used in following continuity
conditions employing the mode-matching method are summa-
rized here from the previous section in tBezone, plus those
found also in thel and C regions:

I(’d),)

ES(r,¢,2)

-3 Y s,

m=0n=—o0

LArlwnN( ) rlwnO +ZA72wnN( ) 317710]6”“25

ES(r,¢,2)

= i i isin (kS 2)

m=1ln=—o0

- Anrn COS kirn[ h’C]J ( ) e e e n
rg_:()n_z—:oo ' [qSA;LLnlN(T)arllnlO + &Ainl]\r(T)arQLmO]e ¢
(122)  HI(r ¢,2)
I . oo &%)
Har d)’ & = Z Z isin (kS 2)
- Z Z AZLLSIH kirn[ h’C]) (0 7) ine m=1n=—o0
m=ln=—e [hAn’rn r( ) nm +hAn'rn r( ) zwn ]6”“15
(123) N 0 N 0

E(r, ¢,2)

= i i tsin (k,, [z — hel)

= AhI J/ .
Srn nrna n( ) R

B e @m] ins
(124)
Hi(r, </>, z)

= E E COS mn

m=0n=—o0

'[anmAhI J (0'17)—11, AeI O' J/(O' 7):|6m;5

R nm m nm- m-"n

— hel)

{EZ7E¢7 HZ? H¢}|r=

components because the =

HY(r,¢,2)

-3 Y s,

m=0n=—o0

[gAnmN( ) Apmo +¢Annl]\’(7) EwnO]eznqb'
Field expressions in (130)—(133) for the circulator puck region
are available in [2] and [10].
Use of tangential-field continuity at the= R interface will
be used to connect the various regions, withe variable, i.e.,
R- — {EZ7 E¢7 H., ‘Ht?5}|1*=R+
This expression must be applied at #i® andIO interfaces.
It will not hold at the CO interface for the magnetic-field
R surface contains singular
forcing functions (delta functions). In the spirit of applying
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(130)

(131)

(132)

(133)

. (134)

5O (125) rigorous mode-matching theory by projecting testing functions
E(r, (7)7 z) on the continuity equations and integrating, we find for ibe
e =e in interface
Z Z Annge K rne )Zrne (Z)G ¢ (126) ho ho
e —— Yl Eldz = Yl E9dx (135)
O g h h
Her d)’ ) }fo I I ;LO I 0
—h . =
AROT— Kn( ’)Z (z)emqb (127) ‘ 1/)e¢mE¢ dz ‘ 1/)e¢mE¢ dz (136)
nmy, Om I3 my, ho hc
my=1ln=—oc ho ho
O( g (7)7 ) } r(/}izrnHi dz = } r(/}}LZTnHZO dz (137)
L W]
—h ho ho
ROT— O
Z Z _Srnh Anrn]T Oy, K’;L( Oy, )Zrnh (Z) Z/}}quané dz = ”(/}}quan? dz (138)
my=1ln=—oc hc hc
. o2 0 or_ 1 and for theCO interface
) Zn + nle Aiwn K ( Tm ) ha ha
,,;1 n_z_:oo " < ik, S ECdy= S E9dz (139)
—e 0 0
erne (Z) ind ha c . ha o o
5 (128) P By dz = Vo ES dz. (140)
HO(r .
Hy(r, ¢, 2) Lastly, for theO(C + I) interface
me . 3 1 he ho
Z Z — = Azglf K ( Ty, )Lk'o z/}eznlEzo dz = z/}ezrnEzc dz + z/}ezrnEi dz
rnh—l n=—oo Zmy 0 he
dZ (141)
rnh ”“75 eOT— O ho RO
+ _U’ Anrn Tm ©
ZZ@ e Wz = [ 4GStk [ 4L b
—e 64 ho
. K;L(USLGT)ZmG (z)e™m? (129) (142)
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Here,z/;}jm are z-dependent testing functions of the parprojections and integrations are performed, become
ticular regioni = I, O, C as applied to thef-type of
field-continuity equation for componeyiitype, with the mode  J,, (o} R)A¢!

nm

index m. Projection of these functions on the field-continuity Mg,

equations in the fashion of (135)—(142) allows their orthogonal — Zem Z K, (69 R)RBT= Ac0T- 19 ’
properties to be used, with proper attention paid to weighting ht &~ el e e e
functions, thereby reducing the complexity of the eventual m=0,1,---, M (150)

system of equations describing the problem. Wherever or- il n
thogonality is exploited, matrix sparsity is enhanced. For —sl,la},ljg(a},lR)AZLl+%Jn(a}nR)Afm
the exterior zone problem, the work required to determine

. . . ME
Fhe orthogonal properties of _the sc_alar generating potentlal_s _ 2 i —s0 6O K’ (50 RYRBT-AROT-
is balanced by their convenience in use and sparse matrix ihr ) My TR my, my Stnmy
my =

behavior. We will use such potential properties here, noting "
that it is possible to use an external unloaded zone cavity o 4 2 i ipf,)lenK (6 R)RBT-
testing function (with no orthogonal features, but easy to sZmmy, T gp R n\Tm, Me

e

identify). These testing functions are me=1
'Aflnge_I;g;lnle’ m= 1’ 2’ e ’MIh
z/}<£z7n = z/}}u;brn = Cos (kim [Z - hC])7 (151)
o= ™ =01, M (143)  Kalon R)nlmCn ALDT
hI Mc
z/}}LZTn = r(/}iqbrn = Sln (ki’nl [Z - hC])? - E(?B Z [ZA’}LTRG/'}V’”O + ZAinlArQLrnO]Iggnern
I _ m _ . h,e m=0
B = o m=12 M (144) e
oT I el 7OI
r(/}eczrn = COs (kzcrnz)v kzcrn = ? m = 07 17 Ty MC + &d Z Jn (O—"lR)An"lIZ‘”ne"“
C m=0
(145) me =1,2,--+, M§
Vo = sin(kS,2), kS, = ? m=1,2,-, Mg (152)
C
(146)  —Sen, O K0 (o R)YRDT=CR ARDT
z/}eozm :7;6 (Z), m=12--, Mé (147) &5 m fe) BT— 4eOT— 700
o —h A + Z _Kn (anle R)anh Aﬁrne IZZrnhrne
Veosm = ZLm,, (2), m=12,---,Mg§. (148) oyl R
Mc
Notice that the infinite summations contained in the field = [ZA;mN(R)a}Lm,O + ZAimN(R)afmo]
representations have been truncatedMg i = I, O, C in m=1
the respective regions, with mode type differentiation in the M}
external zonesM; must be chosen with some ca; and I9C R Z —isl oL J (oL, R)AML 19T
M may be chosen relative tfo (ignoring for the moment, L m=1 "
mode-type differentiation) as MP g
h h + i%Jn(O—LLR)AZInLIg;;hnN
M= LMo Mg =-SMo. (149) m=1
ho ho mp =1,2,+--, M&.

There is some flexibility in the specific ratio convertidgdo (153)

into the other summation limits [12]. These issues are referred . . ) . )

to as the relative convergence behavior. How large to chod3eN€S€ previous relationships, for the interhaegion

Mo is an issue of absolute convergence, specifically how . [ -

accurate an answer we desire for the problem solution. (k)™ = (om)” + (kzm)” (154)

Also, the normalizeds,?lh constant used in (153) is
B. Nonsource-Governing Equations

Selection of the subset (if a full set is not needed) of 50 — Sglh' (155)
continuity equations is not unique [13], the choice being e u(z)

dependent upon individual inclination, sometimes numerical . ] .
advantage, and the requirement that the number of equatidR§ overlap integrals found in (150)-(153) are given by
equal the number of unknowns when the missing sourtE56)—(165), shown on the following page [11].

equations are included (to be addressed later). Thus we choos@rthogonality relationships relevant to these equations are
(135), (136), (141), and (142), which, once the testing functidound in (104) and (116) for, respectiveﬁfne andZ" [used

my,
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ho
Ichnrne = /} COs TZI [7 - hC]) ( )dZ
[1e}
OB OB ho
R COS(/@meh )/ mm B oT
=2 s GOy, % Uy B0 eon (o = hol)d=
B COS( OB hC) kOT
_ ZMe ZMe . k,OT h 156
0T con (RO, ) (RO, )2 — (mmgy? 2 (o) (159
ho
190 = /} s (571 = hel ) Zi, (2) ds
s
OB sin (k98 he) [t mm JOT
-t astay f, @ (k-0 mOShE- o
pQB sin (k98 he) mm /h oT
- _ zm : ¢ 157
O S (RO ) (RO )2 — G e 2 (Ko ) (157
ho 1 dZ., (2)
fo-  _ : mn., _ TEm )
sZmime /hc: Sin < hi [7 hC]) Lk?nTze dz dz
ho e
= /} sin <mh—zr[z - hc]> Z o (2)dz
s
EOB cos (kOB h ) ho mr
= o eme CF in ( ——[z = hc] ) sin (k9L [z — h
OT cos (k?nTl hI) /hc: S1I < hI [7 C]) SlIl( ZMe [ O])
OB cos (k98 h¢) ma /Ry
_ ZMe kOT h 158
ST Cos (K08 ) (RO — ()2 12 (Fom. ) (159
hc, e hc kOB
15m= [ B eos(iu2) e = [ 2eos (9 2 cos (1,20 d = A=) Gy ey sin (92 )
0 0 ( ZMe ) ( 4771)
(159)
ho _, mm
IZcrn m = /} Zﬁle (Z) COS <h_1[z - hC]) dz = chnrne (160)
Zo —h —e—
I9mm. = [ 09,0, Vo ()
ho —n —eB_ ho —n eT—
=2 [z Gl [ 2 2
L
= pnll(?‘[?slrgnhnle +prnEISTSElhrne (161)
he
I, = =4 [ s (K08, 2)sin (K5 2) d:
0
4 .
= o o= rom 2 o, cos (KSR, o) sin (KR ) — KR, sin (K, ) con (K05, )] (162)
Zmy, ZMe
OB OB sin (kOB ) cos (kOB h ) ho
ITT — 4“ zmy, zm / - oT h kOT h d
F8MLTe udT OT sin (k?n?] hr) cos (kQY ht) Jh., sin (K2, [2 = hol) sin (R, [ = hol) dz
Bsm EOB he) cos (kOB he) k9B sin (kOB he)cos (BOB he) — k9B cos (BOB he)sin (k9B he
— 4ud zmy, 4rne ZMe zmy, ZMe zZmy, zZmy, ZMe
ud OT SlIl (kzon?h h’I) COs (kzon?eh’I) (kzonl?h) (kzonl?e)
(163)
heo —h heo 21C
S = [ Zo i (6,0 = =2 [ sin (9D, 2)sin (4,2 s = (oo (=) sin (22, e
0 0 ( an) ( 47711)
(164)

ho
198 = [ Zo@sin (5 - el ) s = 191, (165)

C
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in (152) and (153)], and below for (150) and (151):

ho
wiznlwiznl’ dz
hc
ho /
:/ cos <m[2—h]> cos <m7r
ho hI hI
h
= _Iérnrn’
2em
ho
z/jiqbrnz/}iqbrn’ dz
hc
ho /
mm m T
= sin | —[z — h] | sin
/hc: < ht [ ]> < ht
h
= _Iérnrn’v m, m’ >0
2
where
__ L1 m=0
™=, m>0.
Also

—e—

L (2) =

was used in (158), and a similar formula exists for tié “

mode.

1 dffne (z)
1kOT dz

ZMe

[z — h]) dz

(166)

[ — h]) dz

(167)

(168)

(169)

Four-system equation-set (150)—(153) constifte+ M+
Mg+ ME +1 individual equationsy(M;+Mo)+1 if the “¢”

and ‘A" mode index limits are the same), but the unknowns are

1
Apm0»

2
Apm0»
eOT—

anme )
AhOT—

nmy, )

AeI

nm?

AhI

nm?

m=0,1,---, Mc (170a)
m=1,2,-,Mc (170b)
me =1,2,-+, M& (170c)
my, =1,2,-+, Mg (170d)
m=0,1,---, Mf (170e)
m=1,2,--, M} (170f)

making a total ofMf + M + M+ M} +2(Mc+1) of them

(2(M1+Mo+Mc+1) ifthe “¢” and “h” mode index limits are

the same). Notice that the = 0 case has been left off of the
second radial-mode coefficient index listing (170b) because
it corresponds to the zero perpendicular thickness situation
and we expect the first radial mode to completely dominate.
Therefore, we see that exacthM- + 1 more equations are

required to describe the structure.

C. Source-Governing Equations

H.a(¢,2) =HY'8(z = 2)8(6 — ¢')A¢ + HD (¢, 2).
172)
Both H,4 and H.4 may be expressed by a Fourier series
constructed from the same expansion functions as used to

represent the circulator puck field components on the interval
(0, h¢) by simply using the extended field @¢r-hc, hc) [14]

as follows:
mmnz
hc

H¢A(¢7 Z) = Z H:;:SArn cos

m=0
+ Y Hiyppsin <ﬂ;—7:) (173)
m=1
= mmnz
HZA(¢7 Z) = Z Hchrn CcOoS < hC )
m=0
+ Z HjArn sin <ﬂ;:rz> (174)
m=1 C
c _ Em he ex mnz
Hiy(0) = he . HG% (¢, ) cos e dz
he
— ﬁ H¢A(¢, Z) COS <m7r2'> dz (175)
hC hc
1 he . ”
Zam(9) =— 242 (p, 2) sin <m7r7> dz
hc —hc hc
2 he ”
= 2a(p,2)sin <m7r7) dz  (176)
he 0 ho
HgArn = H:;:SArn =0. (177)

Here ‘ez” indicates extended field and (177) results from
the cos or sin nature of the field component variation within
the circulator puck. It is convenient to retain the exponential
Fourier series or{—, ) for an additional representation of
the ¢-dependent coefficients found in theexpansions (173)
and (174). Thus

Hqchrn(d)) = Z H:;SArnnein¢ (178)
zArn(d)) = Z ‘ElgArnneinq5 (179)

c 1 N c —in
HqSArnn = % / H¢Arn (¢)C ¢ d¢ (180)

s 1 " s —in
zAmn = % /_ HzArn(d))e ¢ d¢ (181)

With the foregoing information, namely (171)—(181), the

The missing equations come from two source equatiopgoper constraints on the sources, can be imposed. It is done
governing the exchange of energy between the magnetic deigyugh the requirements that the tangential magnetic-field
forcing functions acting on the = R surface through a components to the = R surface be continuous in a limiting
point aperture, and the puck structure. The components gfcess just to the inside and outside of the device perimeter
the surface magnetic field are chosen to couple the external

environment to the circulator puck structure, thereby defining
a Green'’s function construction. The two source equations are

Hya(d,2) =HE8(z — 2)6(¢p — ¢/ ) AP + HY (¢, 2)

(171)

(182a)
(182b)

Hil,=p- = Hyalr=r+
Hzc|1*=R— = HZA|’I‘=R+-

Use of the azimuthal orthogonality property and recognizing
the similarity of the perpendicular coordinate expansions in
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both the puck and aperture (source) surface 2 Mg 5
Ichnrnh + h Z _U'T?le T?le K’;L( T, R)
HClrl;ln = Hqchrnn (1833) © me=1
ngln - Hchrnn (183b) RBT AZQLT Ichnrn ’ m = 07 17 T MC-

. , . 187
where we have written outir to emphasize the difference (187)

between the puck expansion coefficients and the apertuth
coefficient, which happens to be a cosine type. Placing (175)
into (180) gives, considering first the LHS of (183a)

Overlap integrals on the RHS of (187) are determined to be

“he
19, = / c0s (KS, 2)(1/ikOB (dZm, (2)/dz)dz
0

hc T
£
HC, :l/ H((j)z) .
dAMn o,
mwhe Jo o J o= :2/ cos (kS,,z) cos (kn, 2) dz
- COS <$)e—in‘?5 d¢dz, (184) 0 -
© Zmy, OB 168
~ (k9B )2 - (kgm)2( 1™ sin (k3,,,, hc)  (188)

Next, insert the source equation (171) into (184) as follows:

—€

he
C
ha Ichnrne = / COs (kznlz)Zrne (Z) dz
= fm / Hg,té(z —2') cos <m7rz> dz 0

HC ) —_—
dAmn th C he
=92 / cos (kS ) cos (/f?m z)dz
0

i 8(¢p — #)AP e~ dop dz

- kOB
he Ame (=1)™sin (kO he). (189)
Em mmwz OB C \2 zm
+ The / - Hq?(¢7 Z) €os < I ) (kmle) = (k5)
e~ dg dz The sixth system equation containidgc subequations is

found by treating (182b). Place (176) into (181), obtaining

— s (M2 HptA¢’e_i"¢’+“O” integral.
whe hc he s
(185) 4Amn - th / /—71— HzA (7)7 sin < ) d(f) dz.

RetrievingHO in (129), the second integral in (185) can be (190)
evaluated as follows for the OB and OT regions being identi-

cal, demonstrating the reduction of one infinite summation: hserting the aperture source expression (172) for the perpen-
dicular magnetic-field component into (190) gives

“O" integral )
mmnz o b .
He, ~=-—"—sin < )H?”fAd)’e‘”“‘5 +“0" integral.
Ern m prn’ 5 zAmn z
= Z Z { AP K. (09, R) The he
C =0n'=—occ (191)
- U’rn’An rn’o—rn’K;L’(O—r?l’R):| Using (127), the outside integral second term is expressed as
v hc: !
i(n/ —n) m'n m)
X d 2 dz “ y” ROB—
/_776 </>/0 cos < o ) <hc z o) mtegral_— Zl Z AP K (09, R)
o> o> nlh— Tl =00
Ern / / ™
= 2 6n nI _
th nlzlz:on,;m n m] ™ cm/m . /_ﬂ— i(n'—n)¢ d¢/ sin k?n”
2e >
hC nlz’z:o hC ( )

At this stage, constraint (183a) can be imposed, invoking (138Jith the help of (132) for the puck field on the LHS of (182b),
for the RHS, using the previous (185) and (186) results. Tlaed employing (191) and (192), the final perpendicular source
fifth system equation, containing/; + 1 subequations, can equation is written as

now be stated as

h h 2
Y AnrnN (R) Anmo + AnrnN (R) Qim0
; A (R) Qpmo T qSAnmN(R)GELmO

nmN 1 . m7rz _ 2
. mrz . R %, =- 3 Sl < h HPtA¢ ing’ + -
= cos Hg,Ad)e e | T t The c tho
7rhc hc hc ME
o)
MY Z BT— AhOT—
Q pgll]? BT— +hOT— : K rn] an] Anrn] IsZrnrn, )
: R K (anll R)anh nmy, my, =1
my, =1

m=1,2--,Mc. (193)
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The overlap integral in (193) is given by

ICO

sZmmy,

—h

hc
= [ sin €207, () d:
0
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hc
:2i/ sin (kS 2) sin(k?nl?hz) dz
0

(—1)™sin (K98 he

equations of generally smaller size than the reduced system
matrix.

Setting HY/A¢/ = 1 and H}JA¢ = 0 (or the reverse)
allows for the solution of the suite of unknowns coefficients
in the column vector. When these solutions (or the reverse)
are placed in the electromagnetic-field formulas, the dyadic
Green’s function elements are generated. This may be put

). (194) down symbolically as

(k9w )? — (BSn)? e
T P,Z% /o — .z
Orthogonality relationships implicitly contained in (187) and G (¢ 2) = Fly [S(1,0)] (198)
(193) for the puck test eigenfunctions are G}f;jﬁ(r, ¢, 7) :FE}“}{[S(O, 1)]. (199)

C C
z/}}Lanz/}}Lan’ dz

hc
/0

C C
¢}L¢nl¢}L¢nl’ dz

/'}Lcj
0

_ he
2%,

hc
/0

6rnrn’ .

ho
/ sin (kS 2
0

cos (kS,,2) cos (kS

zm”~

z) sin (kS

Zmy

2)dz

2)dz

Z1my

D. Complete-System Equations

The six system equations, four sourceless as seen
(150)—(153), and two with magnetic sources in (187) a
(193), may be stated in compact form in the following singlﬁ;n

matrix formula:

he

6rnrn’7
2
m,m' >0 (195)

(196)

S represents system (197) arfi{1,0) corresponds to the
azimuthal magnetic source turned off.is the field equation
operator and produces the correct component (first superscript)
for the desired field (electric or magnetic field, indicated by
the first subscript).

It is clear that if we had only one term for each summation,
then the compressed form in (197) would represent:a 6
system, and it would be possible, but extremely tedious, to
pull the forcing terms through the determinant solution for
each unknown and obtain explicit real-space dyadic Green'’s
function elements. But for our problem here with incommen-
surate heights (or other geometrical dimensions), the problem
is in practice impossible to solve for an explicit dyadic
Green’s function. One would look naturally to reciprocal
space to obtain by analytical means compact explicit dyadic
GPPeen’s function expressions. However, there is a tremendous
vantage in not going to reciprocal space, and this is that the
plicit dyadic Green'’s function can be used to obtain the field
behavior directly without any transformations. Furthermore,

[ 0g1 042 1t Op1 Z or Onor | these Green'’s functions can be used to obtairstharameters
Ou1 Ous 1. 1ot Ze Z al,.o7 for the circulator structure too.
¢ ¢ < ' 0T hoT | a2 o Mention is made here that the diagonal nature of the relation
Zal ZGQ Zel Ot leor  Onor | | A<l | between different region amplitudes in the outer zone allows
Z Z Z Z 1 1 AL one amplitude (per mode class) to characterize the entire zone
al a2 el RI eOT hOT cO . ; .
1 1 0 0 0 A (the “T” amplitude was chosen). Once they are determined
al a2 el ht cOT ZhOT AMO | by (197), the subsidiary diagonal equations (100) and (112),
L lar laz O 0w Y or o stated explicitly below, may be employed to capture tB& *
r 0 ‘ 1 amplitudes
eOB— 1 rpBT— 9 4e0T—
8 A? B— By lgT— 0 A? T—
0 Ans 0 R 0 A
= o (T et A g gine (197) : | : ' ; ;
Em mnz ing 200)
HPfA ! —ing (
[ 7he © < he ) o AP AMOB=7 [RBT- 0 7 [AMoT-
. hOB— BT— ROT—
A representativevmth element for each class of unknowns |4nz R 0 Ans
is shown in the LHS column vector. The matrix entries are : - : : : :
as follows: O for no contribution of t_he .subscript type of Ahg\)ﬁ— 0 0 Rfﬁ_ Ahg\)ﬁ—
unknown, 1 for a single entry contribution, arid for a "o - o -t " 0(201)

sum of all that particular class of unknowns indicated by the
subscript. On the RHS of the equation are the source-forcing
terms. It is possible to reduce the size by analytical effort
of the system matrix (197) due to the appearance of null andSource-constraint equations have been combined with the
unity entries, and solve a smaller inhomogeneous linear matnrode-matching technique to obtain in direct space implicit

problem, albeit with fewer unknowns determined initially. Thelyadic Green’s function elements for a very general canonical
remaining unknowns are captured by solving subsidiary matgirculator geometry. The approach allows the inclusion of

IV. CONCLUSION
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a situation not treated here). In the first structure, the electric-
wall condition above the puck is maintained by microstri
metal. For the second structure, it is maintained by a cot
bination of the microstrip metal and low-coercivity “keeper’
plate (or cover) permalloy. Hexagonal materials include B
Pb, or Sr, iron—oxide compounds. The garnets are the us
Y, iron—oxide compounds, and the spinels are the Ni, Li, «
MgMn, iron—oxide compounds. 7
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